Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Purdue startup hopes to change the way we test cancer drugs

W. Andy Tao uses nanopolymers and chemical reactions that cause color changes in a solution to detect activity related to cancer cell formation. (Purdue Agricultural Communication photo/Tom Campbell)
W. Andy Tao uses nanopolymers and chemical reactions that cause color changes in a solution to detect activity related to cancer cell formation.
(Purdue Agricultural Communication photo/Tom Campbell)

Abstract:
Phosphorylation Assay Based on Multifunctionalized Soluble Nanopolymer

Anton Iliuk, Juan S. Martinez, Mark C. Hall, and W. Andy Tao

Quantitative phosphorylation analysis is essential to understanding cellular signal transductions. Here we present a novel technology for the highly efficient assay of protein phosphorylation in high-throughput format without the use of phospho-specific antibodies. The technique is based on a water-soluble, nanosize polymer, termed pIMAGO, that is multifunctionalized with titanium(IV) ions for specific binding to phosphoproteins and with biotin groups that allow for enzyme-linked spectrometric detection. The sensitivity, specificity, and quantitative nature of pIMAGO for phosphorylation assays were examined with standard phosphoproteins and with purified phosphoproteins from whole cell extracts. As low as 100 pg of phosphoprotein can be measured quantitatively with the pIMAGO chemiluminescence assay. The pIMAGO assay was applied to an in vitro kinase assay, kinase inhibitor screening, and measurement of endogenous phosphorylation events. The technique provides a universal, quantitative method for global phosphorylation analysis with high sensitivity and specificity.

Purdue startup hopes to change the way we test cancer drugs

West Lafayette, IN | Posted on March 16th, 2011

A Purdue University scientist's nanopolymer would make it easier and cheaper for drug developers to test the effectiveness of a widely used class of cancer inhibitors.

W. Andy Tao, an associate professor of biochemistry analytical chemistry and a member of the Purdue Center for Cancer Research team, created the Purdue-patented pIMAGO nanopolymer that can be used to determine whether cancer drugs have been effective against biochemical processes that can lead to cancer cell formation. The nanopolymers would attach themselves to target proteins that would later be detected by a relatively simple laboratory procedure called chemiluminescence.

Tymora Analytical, a company Tao started in the Purdue Research Park, will manufacture the pIMAGO nanopolymers. The 'p' stands for phosphor, and the IMAGO comes from the Greek word for image.

Tao's pIMAGO nanopolymers are coated in titanium ions and would attract and bond with phosphorylated proteins, ones in which a phosphate group has been added to a protein activating an enzyme called kinase. Kinase, when overactive, is known to cause cancer cell formation, and many cancer drugs are aimed at inhibiting kinase activity.

"It is universal. You can detect any kind of phosphorylation in a protein," said Tao, whose findings were reported in the early online version of the journal Analytical Chemistry. "It is also cheaper and would be more widely available."

The nanopolymers would be added to a solution of proteins, a chemical agent to start phosphorylation and a drug to inhibit kinase activity. Phosphorylated proteins would only be present if the drug is ineffective.

Avidin-HRP - the protein Avidin bound with the enzyme horseradish peroxidase - would be added. Avidin would bind with a vitamin B acid called biotin that is also on the nanopolymers' surfaces. A chemical called a substrate, added later, would cause a reaction with HRP, causing the solution to change color.

A lightly colored solution would mean there had been little kinase activity and few phosphorylated proteins and that the drug was effective. A darker solution would signal more kinase activity and a less effective drug.

"This could have a lot of applications in pharmaceuticals for drug discovery," Tao said.

Screening kinase inhibitors using antibodies can be cost-prohibitive for many laboratories because antibodies are in short supply and aren't available for many types of cells. Radioisotope tests are highly regulated and possibly dangerous because of radiation involved.

"We want to develop this as a commercial application to replace radioisotopes and antibodies as a universal method for screening kinase inhibitors," Tao said.

The National Science Foundation and the National Institutes of Health funded the research.

####

For more information, please click here

Contacts:
Writer:
Brian Wallheimer
765-496-2050


Source:
Andy Tao
765-494-9605


Ag Communications:
(765) 494-2722;
Keith Robinson

Copyright © Purdue University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Aculon Hires New Business Development Director December 19th, 2014

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Zenosense, Inc. - Hospital Collaboration - 400 Person Lung Cancer Detection Trial December 17th, 2014

SUNY Poly NanoCollege Faculty Member Selected as American Physical Society Fellow: SUNY Poly Associate Professor of Nanoscience Dr. Vincent LaBella Recognized for Significant Technological Innovations that Enable Interactive Learning December 17th, 2014

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

Nanomedicine

Creation of 'Rocker' protein opens way for new smart molecules in medicine, other fields December 18th, 2014

Iranian Researchers Produce Electrical Pieces Usable in Human Body December 18th, 2014

Zenosense, Inc. - Hospital Collaboration - 400 Person Lung Cancer Detection Trial December 17th, 2014

Unraveling the light of fireflies December 17th, 2014

Discoveries

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Creation of 'Rocker' protein opens way for new smart molecules in medicine, other fields December 18th, 2014

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Announcements

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Aculon Hires New Business Development Director December 19th, 2014

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Patents/IP/Tech Transfer/Licensing

Silicon Valley-Based Foresight Valuation Launches STR-IP™, a New Initiative for Startups to Discover the Value of Their Intellectual Property December 18th, 2014

Chemists Fabricate Novel Rewritable Paper: An attractive alternate to regular paper, UC Riverside-developed technology helps address increasing problems in environment and resource sustainability December 2nd, 2014

Dicerna Announces License Agreement with Tekmira to Advance Dicerna’s PH1 Development Program November 17th, 2014

First genetic-based tool to detect circulating cancer cells in blood: NanoFlares light up individual cells if breast cancer biomarker is present November 17th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE