Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Berkeley Lab Scientists Achieve Breakthrough in Nanocomposite for High-Capacity Hydrogen Storage

This schematic shows high-capacity magnesium nanocrystals encapsulated in a gas-barrier polymer matrix to create a new and revolutionary hydrogen storage composite material. (Image from Jeff Urban)
This schematic shows high-capacity magnesium nanocrystals encapsulated in a gas-barrier polymer matrix to create a new and revolutionary hydrogen storage composite material. (Image from Jeff Urban)

Abstract:
Since the 1970s, hydrogen has been touted as a promising alternative to fossil fuels due to its clean combustion —unlike the combustion of fossil fuels, which spews greenhouse gases and harmful pollutants, hydrogen's only combustion by-product is water. Compared to gasoline, hydrogen is lightweight, can provide a higher energy density and is readily available. But there's a reason we're not already living in a hydrogen economy: to replace gasoline as a fuel, hydrogen must be safely and densely stored, yet easily accessed. Limited by materials unable to leap these conflicting hurdles, hydrogen storage technology has lagged behind other clean energy candidates.

Berkeley Lab Scientists Achieve Breakthrough in Nanocomposite for High-Capacity Hydrogen Storage

Berkeley, CA | Posted on March 14th, 2011

In recent years, researchers have attempted to tackle both issues by locking hydrogen into solids, packing larger quantities into smaller volumes with low reactivity—a necessity in keeping this volatile gas stable. However, most of these solids can only absorb a small amount of hydrogen and require extreme heating or cooling to boost their overall energy efficiency.

Now, scientists with the U.S. Department of Energy (DOE) Lawrence Berkeley National Laboratory (Berkeley Lab) have designed a new composite material for hydrogen storage consisting of nanoparticles of magnesium metal sprinkled through a matrix of polymethyl methacrylate, a polymer related to Plexiglas. This pliable nanocomposite rapidly absorbs and releases hydrogen at modest temperatures without oxidizing the metal after cycling—a major breakthrough in materials design for hydrogen storage, batteries and fuel cells.

"This work showcases our ability to design composite nanoscale materials that overcome fundamental thermodynamic and kinetic barriers to realize a materials combination that has been very elusive historically," says Jeff Urban, Deputy Director of the Inorganic Nanostructures Facility at the Molecular Foundry, a DOE Office of Science nanoscience center and national user facility located at Berkeley Lab. "Moreover, we are able to productively leverage the unique properties of both the polymer and nanoparticle in this new composite material, which may have broad applicability to related problems in other areas of energy research."

Urban, along with coauthors Ki-Joon Jeon and Christian Kisielowski used the TEAM 0.5 microscope at the National Center for Electron Microscopy (NCEM), another DOE Office of Science national user facility housed at Berkeley Lab, to observe individual magnesium nanocrystals dispersed throughout the polymer. With the high-resolution imaging capabilities of TEAM 0.5, the world's most powerful electron microscope, the researchers were also able to track defects—atomic vacancies in an otherwise-ordered crystalline framework—providing unprecedented insight into the behavior of hydrogen within this new class of storage materials.

"Discovering new materials that could help us find a more sustainable energy solution is at the core of the Department of Energy's mission. Our lab provides outstanding experiments to support this mission with great success," says Kisielowski. "We confirmed the presence of hydrogen in this material through time-dependent spectroscopic investigations with the TEAM 0.5 microscope. This investigation suggests that even direct imaging of hydrogen columns in such materials can be attempted using the TEAM microscope."

"The unique nature of Berkeley Lab encourages cross-division collaborations without any limitations," said Jeon, now at the Ulsan National Institute of Science and Technology, whose postdoctoral work with Urban led to this publication

To investigate the uptake and release of hydrogen in their nanocomposite material, the team turned to Berkeley Lab's Energy and Environmental Technologies Division (EETD), whose research is aimed at developing more environmentally friendly technologies for generating and storing energy, including hydrogen storage.

"Here at EETD, we have been working closely with industry to maintain a hydrogen storage facility as well as develop hydrogen storage property testing protocols," says Samuel Mao, director of the Clean Energy Laboratory at Berkeley Lab and an adjunct engineering faculty member at the University of California (UC), Berkeley. "We very much enjoy this collaboration with Jeff and his team in the Materials Sciences Division, where they developed and synthesized this new material, and were then able to use our facility for their hydrogen storage research."

Adds Urban, "This ambitious science is uniquely well-positioned to be pursued within the strong collaborative ethos here at Berkeley Lab. The successes we achieve depend critically upon close ties between cutting-edge microscopy at NCEM, tools and expertise from EETD, and the characterization and materials know-how from MSD."

This research is reported in a paper titled, "Air-stable magnesium nanocomposites provide rapid and high-capacity hydrogen storage without heavy metal catalysts," appearing in the journal Nature Materials and available in Nature Materials online. Co-authoring the paper with Urban, Kisielowski and Jeon were Hoi Ri Moon, Anne M. Ruminski, Bin Jiang and Rizia Bardhan.

This work was supported by DOE's Office of Science.

The Molecular Foundry is one of the five DOE Nanoscale Science Research Centers (NSRCs), premier national user facilities for interdisciplinary research at the nanoscale. Together the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The NSRCs are located at DOE's Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge and Sandia and Los Alamos National Laboratories.

####

About Berkeley Lab
Lawrence Berkeley National Laboratory is a U.S. Department of Energy (DOE) national laboratory managed by the University of California for the DOE Office of Science. Berkeley Lab provides solutions to the world’s most urgent scientific challenges including sustainable energy, climate change, human health, and a better understanding of matter and force in the universe. It is a world leader in improving our lives through team science, advanced computing, and innovative technology.

For more information, please click here

Contacts:
Aditi Risbud
(510)486-4861

Copyright © Berkeley Lab

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

For more information about the Molecular Foundry vist the Website at

For more information about the National Center for Electron Microscopy Center visit the Website at

For more information about the DOE Hydrogen Storage program, please visit:

Related News Press

News and information

March 2016; 6th Int'l Conference on Nanostructures in Iran July 29th, 2015

Non-Enzyme Sensor Determines Level of Blood Sugar July 29th, 2015

Flexible Future of Point-of-Care Disease Diagnostic July 29th, 2015

Meet the high-performance single-molecule diode: Major milestone in molecular electronics scored by Berkeley Lab and Columbia University team July 29th, 2015

Discoveries

Non-Enzyme Sensor Determines Level of Blood Sugar July 29th, 2015

Flexible Future of Point-of-Care Disease Diagnostic July 29th, 2015

Meet the high-performance single-molecule diode: Major milestone in molecular electronics scored by Berkeley Lab and Columbia University team July 29th, 2015

Detecting small metallic contaminants in food via magnetization: A practical metallic-contaminant detecting system using three high-Tc RF superconducting quantum interference devices (SQUIDs) July 29th, 2015

Announcements

Non-Enzyme Sensor Determines Level of Blood Sugar July 29th, 2015

Flexible Future of Point-of-Care Disease Diagnostic July 29th, 2015

Meet the high-performance single-molecule diode: Major milestone in molecular electronics scored by Berkeley Lab and Columbia University team July 29th, 2015

Detecting small metallic contaminants in food via magnetization: A practical metallic-contaminant detecting system using three high-Tc RF superconducting quantum interference devices (SQUIDs) July 29th, 2015

Energy

March 2016; 6th Int'l Conference on Nanostructures in Iran July 29th, 2015

Smaller, faster, cheaper: A new type of modulator for the future of data transmission July 27th, 2015

Reshaping the solar spectrum to turn light to electricity: UC Riverside researchers find a way to use the infrared region of the sun's spectrum to make solar cells more efficient July 27th, 2015

Industrial Nanotech, Inc. Provides Update on PCAOB Audited Financials July 27th, 2015

Automotive/Transportation

Ultra-thin hollow nanocages could reduce platinum use in fuel cell electrodes July 24th, 2015

Researchers boost wireless power transfer with magnetic field enhancement July 23rd, 2015

Molecular fuel cell catalysts hold promise for efficient energy storage July 16th, 2015

Nanocomposites Improve Tire Properties July 9th, 2015

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Stretching the limits on conducting wires July 25th, 2015

BESSTECH’s Innovative Battery Technology is Highlighted During Featured Presentations at SEMICON West 2015: CEO Fernando Gómez-Baquero delivers invited remarks at the event’s Silicon Innovation Forum and Semiconductor Technology Symposium July 16th, 2015

Molecular fuel cell catalysts hold promise for efficient energy storage July 16th, 2015

BESSTECH Names Doug Grose as Chief Technology Officer: Former GLOBALFOUNDRIES CEO to drive technology roadmap and strategic partnerships for emerging lithium-ion battery component company July 14th, 2015

Fuel Cells

Ultra-thin hollow nanocages could reduce platinum use in fuel cell electrodes July 24th, 2015

Nanowires give 'solar fuel cell' efficiency a tenfold boost: Eindhoven researchers make important step towards a solar cell that generates hydrogen July 17th, 2015

Molecular fuel cell catalysts hold promise for efficient energy storage July 16th, 2015

Clay sheets stack to form proton conductors: Model system demonstrates a new material property emerging from the assembly of nanoscale building blocks July 13th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project