Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > New Technology Would Dramatically Extend Battery Life for Mobile Devices

Abstract:
Technophiles who have been dreaming of mobile devices that run longer on lighter, slimmer batteries may soon find their wish has been granted.

University of Illinois engineers have developed a form of ultra-low-power digital memory that is faster and uses 100 times less energy than similar available memory. The technology could give future portable devices much longer battery life between charges.

New Technology Would Dramatically Extend Battery Life for Mobile Devices

Champaign, IL | Posted on March 10th, 2011

Led by electrical and computer engineering professor Eric Pop, the team will publish its results in an upcoming issue of Science magazine and online in the March 10 Science Express.

"I think anyone who is dealing with a lot of chargers and plugging things in every night can relate to wanting a cell phone or laptop whose batteries can last for weeks or months," said Pop, who is also affiliated with the Beckman Institute for Advanced Science and Technology at Illinois.

The flash memory used in mobile devices today stores bits as charge, which requires high programming voltages and is relatively slow. Industry has been exploring faster, but higher power phase-change materials (PCM) as an alternative. In PCM memory a bit is stored in the resistance of the material, which is switchable.

Pop's group lowered the power per bit to 100 times less than existing PCM memory by focusing on one simple, yet key factor: size.

Rather than the metal wires standard in industry, the group used carbon nanotubes, tiny tubes only a few nanometers in diameter - 10,000 times smaller than a human hair.

"The energy consumption is essentially scaled with the volume of the memory bit," said graduate student Feng Xiong, the first author of the paper. "By using nanoscale contacts, we are able to achieve much smaller power consumption."

To create a bit, the researchers place a small amount of PCM in a nanoscale gap formed in the middle of a carbon nanotube. They can switch the bit "on" and "off" by passing small currents through the nanotube.

"Carbon nanotubes are the smallest known electronic conductors," Pop said. "They are better than any metal at delivering a little jolt of electricity to zap the PCM bit."

Nanotubes also boast an extraordinary stability, as they are not susceptible to the degradation that can plague metal wires. In addition, the PCM that functions as the actual bit is immune to accidental erasure from a passing scanner or magnet.

The low-power PCM bits could be used in existing devices with a significant increase in battery life. Right now, a smart phone uses about a watt of energy and a laptop runs on more than 25 watts. Some of that energy goes to the display, but an increasing percentage is dedicated to memory.

"Anytime you're running an app, or storing MP3s, or streaming videos, it's draining the battery," said Albert Liao, a graduate student and co-author. "The memory and the processor are working hard retrieving data. As people use their phones to place calls less and use them for computing more, improving the data storage and retrieval operations is important."

Pop believes that, along with improvements in display technology, the nanotube PCM memory could increase an iPhone's energy efficiency so it could run for a longer time on a smaller battery, or even to the point where it could run simply by harvesting its own thermal, mechanical or solar energy - no battery required.

And device junkies will not be the only beneficiaries.

"We're not just talking about lightening our pockets or purses," Pop said. "This is also important for anything that has to operate on a battery, such as satellites, telecommunications equipment in remote locations, or any number of scientific and military applications."

In addition, ultra-low-power memory could cut the energy consumption - and thus the expense - of data storage or supercomputing centers by a large percentage. The low-power memory could also enable three-dimensional integration, a stacking of chips that has eluded researchers because of fabrication and heat problems.

The team has made and tested a few hundred bits so far, and they want to scale up production to create arrays of memory bits that operate together. They also hope to achieve greater data density through clever programming such that each physical PCM bit can program two data bits, called multibit memory.

The team is continuing to work to reduce power consumption and increase energy efficiency even beyond the groundbreaking savings they've already demonstrated.

"Even though we've taken one technology and shown that it can be improved by a factor of 100, we have not yet reached what is physically possible. We have not even tested the limits yet. I think we could lower power by at least another factor of 10," Pop said.

The work was supported in part by the Marco Focus Center Research Program, a Semiconductor Research Corporation entity, and by the Office of Naval Research. Graduate student David Estrada was also a co-author.

####

Contacts:
Liz Ahlberg
Physical Sciences Editor
217-244-1073


Eric Pop
217-244-2070

Copyright © University of Illinois at Urbana-Champaign

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

High-speed FM-AFM and simulation reveal atomistic dissolution processes of calcite in water July 28th, 2017

Atomic movies may help explain why perovskite solar cells are more efficient: SLAC's ultrafast 'electron camera' captures surprising atomic motions in these next-generation materials July 28th, 2017

Triple-layer catalyst does double duty: Rice, University of Houston produce robust catalyst to split water into hydrogen, oxygen July 28th, 2017

Arrowhead Pharmaceuticals to Webcast Fiscal 2017 Third Quarter Results July 27th, 2017

Govt.-Legislation/Regulation/Funding/Policy

High-speed FM-AFM and simulation reveal atomistic dissolution processes of calcite in water July 28th, 2017

Atomic movies may help explain why perovskite solar cells are more efficient: SLAC's ultrafast 'electron camera' captures surprising atomic motions in these next-generation materials July 28th, 2017

Triple-layer catalyst does double duty: Rice, University of Houston produce robust catalyst to split water into hydrogen, oxygen July 28th, 2017

Ultracold molecules hold promise for quantum computing: New approach yields long-lasting configurations that could provide long-sought “qubit” material July 27th, 2017

Chip Technology

Atomic discovery opens door to greener, faster, smaller electronic circuitry: Scientists find way to correct communication pathways in silicon chips, making them perfect July 27th, 2017

Strange electrons break the crystal symmetry of high-temperature superconductors: Brookhaven Lab scientists discover spontaneous voltage perpendicular to applied current that may help unravel the mystery of high-temperature superconductors July 27th, 2017

First Capacitive Transducer with 13nm Gap July 27th, 2017

Living computers: RNA circuits transform cells into nanodevices July 27th, 2017

Memory Technology

Liquid electrolyte contacts for advanced characterization of resistive switching memories July 26th, 2017

Shining rings: A new material emits white light when exposed to electricity: New synthetic approach could spark development of other dynamic materials July 24th, 2017

Pulses of electrons manipulate nanomagnets and store information: Scientists use electron pulses to create and manipulate nanoscale magnetic excitations that can store data July 21st, 2017

A firefly's flash inspires new nanolaser light July 18th, 2017

Nanotubes/Buckyballs/Fullerenes/Nanorods

Regulation of two-dimensional nanomaterials: New driving force for lithium-ion batteries July 26th, 2017

Killing cancer in the heat of the moment: A new method efficiently transfers genes into cells, then activates them with light. This could lead to gene therapies for cancers July 9th, 2017

Tests show no nanotubes released during utilisation of nanoaugmented materials June 9th, 2017

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

Discoveries

High-speed FM-AFM and simulation reveal atomistic dissolution processes of calcite in water July 28th, 2017

Atomic movies may help explain why perovskite solar cells are more efficient: SLAC's ultrafast 'electron camera' captures surprising atomic motions in these next-generation materials July 28th, 2017

Triple-layer catalyst does double duty: Rice, University of Houston produce robust catalyst to split water into hydrogen, oxygen July 28th, 2017

First Capacitive Transducer with 13nm Gap July 27th, 2017

Announcements

High-speed FM-AFM and simulation reveal atomistic dissolution processes of calcite in water July 28th, 2017

Atomic movies may help explain why perovskite solar cells are more efficient: SLAC's ultrafast 'electron camera' captures surprising atomic motions in these next-generation materials July 28th, 2017

Triple-layer catalyst does double duty: Rice, University of Houston produce robust catalyst to split water into hydrogen, oxygen July 28th, 2017

Physicists gain new insights into nanosystems with spherical confinement: Enormous potential for the targeted delivery of pharmaceutical agents and the creation of tailored nanoparticles July 27th, 2017

Military

Ultracold molecules hold promise for quantum computing: New approach yields long-lasting configurations that could provide long-sought “qubit” material July 27th, 2017

Nanoparticles could spur better LEDs, invisibility cloaks July 19th, 2017

'Upconverted' light has a bright future: Rice University professor developing plasmon-powered devices for medicine, security, solar cells July 17th, 2017

Nature-inspired material uses liquid reinforcement: Rice U. nanoengineers create liquid-solid composites using clues from nature July 11th, 2017

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Rice U. scientists map ways forward for lithium-ion batteries for extreme environments: Paper details developments toward high-temperature batteries July 27th, 2017

Regulation of two-dimensional nanomaterials: New driving force for lithium-ion batteries July 26th, 2017

Ultrathin device harvests electricity from human motion July 23rd, 2017

Argonne National Laboratory’s Continuous ALD Technology Licensed Exclusively to Forge Nano July 7th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project