Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Physicists measure current-induced torque in nonvolatile magnetic memory devices


The geometry of a magnetic tunnel junction.
The geometry of a magnetic tunnel junction.

Abstract:
Tomorrow's nonvolatile memory devices -- computer memory that can retain stored information even when not powered -- will profoundly change electronics, and Cornell researchers have discovered a new way of measuring and optimizing their performance.

Physicists measure current-induced torque in nonvolatile magnetic memory devices

Ithaca, NY | Posted on March 9th, 2011

Using a very fast oscilloscope, researchers led by Dan Ralph, the Horace White Professor of Physics, and Robert Buhrman, the J.E. Sweet Professor of Engineering, have figured out how to quantify the strength of current-induced torques used to write information in memory devices called magnetic tunnel junctions. The results were published online Feb. 27 in the journal Nature Physics.

Magnetic tunnel junctions are memory storage devices made of a sandwich of two ferromagnets with a nanometers-thick oxide insulator in between. The electrical resistance of the device is different for parallel and nonparallel orientations of the magnetic electrodes, so that these two states create a nonvolatile memory element that doesn't require electricity for storing information. An example of nonvolatile memory today is flash memory, but that is a silicon-based technology subject to wearing out after repeated writing cycles, unlike magnetic memory.

What has held back magnetic memory technology is that it has required magnetic fields to switch the magnetic states -- that is, to write information. This limits their size and efficiency because magnetic fields are long-ranged and relatively weak, so large currents and thick wires are needed to generate a large-enough field to switch the device.

The Cornell researchers are studying a new generation of magnetic devices that can write information without using magnetic fields. Instead, they use a mechanism called "spin torque," which arises from the idea that electrons have a fundamental spin (like a spinning top). When the electrons interact with the magnets in the tunnel junctions, they transfer some of their angular momentum. This can provide a very strong torque per unit current, and has been demonstrated to be at least 500 times more efficient than using magnetic fields to write magnetic information, Ralph said.

To measure these spin torques, the researchers used an oscilloscope in a shared facility operated by Cornell's Center for Nanoscale Systems. They applied torque to the magnetic tunnel junctions using an alternating current and measured the amplitude of resistance oscillations that resulted. Since the resistance depends on the relative orientation of the two magnets in the tunnel junction, the size of the resistance oscillations could be related directly to the amplitude of the magnetic motion, and hence to the size of the torque.

The researchers hope such experiments will help industry make better nonvolatile memory devices by understanding exactly how to structure them, and also, what materials would best be used as the oxide insulators and the ferromagnets surrounding them.

The work was supported by the National Science Foundation, the Army Research Office and the Office of Naval Research, and included collaborators Chen Wang, graduate student and first author; graduate student Yong-Tao Cui; and Jordan A. Katine from Hitachi Global Storage Technologies.

####

For more information, please click here

Contacts:
Media Contact:
Blaine Friedlander
(607) 254-8093


Anne Ju
(607) 255-9735


Chronicle Online
312 College Ave.
Ithaca, NY 14850
607.255.4206

Copyright © Cornell University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

CubeSat Structures Competition Opens Space Design to Students of the World December 16th, 2017

Record high photoconductivity for new metal-organic framework material December 15th, 2017

Error-free into the quantum computer age December 15th, 2017

Leti Will Demonstrate First 3D Anti-Crash Solution for Embedding in Drones: Fitted on a Mass-Market Microcontroller, 360Fusion Software Technology Detects any Dynamic Obstacle and Helps Guide Drones Away from Collisions December 15th, 2017

Physics

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure: Researchers are the first to observe the electronic structure of graphene in an engineered semiconductor; finding could lead to progress in advanced optoelectronics and data processing December 13th, 2017

Leti Develops World’s First Micro-Coolers for CERN Particle Detectors: Leti Design, Fabrication and Packaging Expertise Extends to Very Large Scientific Instruments December 11th, 2017

Inorganic-organic halide perovskites for new photovoltaic technology November 6th, 2017

Halas wins American Physical Society's Lilienfeld Prize: Rice University nanoscientist honored for pioneering research in plasmonics October 23rd, 2017

Govt.-Legislation/Regulation/Funding/Policy

Synthetic protein packages its own genetic material and evolves computationally designed protein assemblies are advancing research in synthetic life and in targeted drug delivery December 15th, 2017

Sandia researchers make solid ground toward better lithium-ion battery interfaces: Reducing the traffic jam in batteries December 13th, 2017

Perking up and crimping the 'bristles' of polyelectrolyte brushes December 13th, 2017

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure: Researchers are the first to observe the electronic structure of graphene in an engineered semiconductor; finding could lead to progress in advanced optoelectronics and data processing December 13th, 2017

Spintronics

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Rice U. lab surprised by ultraflat magnets: Researchers create atom-thick alloys with unanticipated magnetic properties October 13th, 2017

A Sea of Spinning Electrons: Rutgers-led discovery could spawn a wave of new electronic devices October 2nd, 2017

Chip Technology

Error-free into the quantum computer age December 15th, 2017

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure: Researchers are the first to observe the electronic structure of graphene in an engineered semiconductor; finding could lead to progress in advanced optoelectronics and data processing December 13th, 2017

UCLA chemists synthesize narrow ribbons of graphene using only light and heat: Tiny structures could be next-generation solution for smaller electronic devices December 8th, 2017

Device makes power conversion more efficient: New design could dramatically cut energy waste in electric vehicles, data centers, and the power grid December 8th, 2017

Memory Technology

Quantum memory with record-breaking capacity based on laser-cooled atoms December 15th, 2017

Leti Breakthroughs Point Way to Significant Improvements in SoC Memories December 6th, 2017

Scientists make transparent materials absorb light December 1st, 2017

A material with promising properties: Konstanz scientist synthesizes an important ferromagnetic semiconductor November 25th, 2017

Discoveries

Quantum memory with record-breaking capacity based on laser-cooled atoms December 15th, 2017

Record high photoconductivity for new metal-organic framework material December 15th, 2017

Error-free into the quantum computer age December 15th, 2017

Synthetic protein packages its own genetic material and evolves computationally designed protein assemblies are advancing research in synthetic life and in targeted drug delivery December 15th, 2017

Announcements

CubeSat Structures Competition Opens Space Design to Students of the World December 16th, 2017

Record high photoconductivity for new metal-organic framework material December 15th, 2017

Error-free into the quantum computer age December 15th, 2017

Leti Will Demonstrate First 3D Anti-Crash Solution for Embedding in Drones: Fitted on a Mass-Market Microcontroller, 360Fusion Software Technology Detects any Dynamic Obstacle and Helps Guide Drones Away from Collisions December 15th, 2017

Military

Synthetic protein packages its own genetic material and evolves computationally designed protein assemblies are advancing research in synthetic life and in targeted drug delivery December 15th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

Promising sensors for submarines, mines and spacecraft: MSU scientists are developing nanostructured gas sensors that would work at room temperature November 10th, 2017

Leti Joins DARPA-Funded Project to Develop Implantable Device for Restoring Vision November 9th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project