Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Switching Qubits with a Terahertz Source?

Molecules on a Chip
Molecules on a Chip

Abstract:
Scientists in Germany and the USA have been able to induce rotational transitions in molecules trapped at a close distance above a chip using a terahertz source. The new results, which are published in ChemPhysChem, could have interesting applications in quantum computing.

Switching Qubits with a Terahertz Source?

Berlin, Germany | Posted on March 2nd, 2011

Polar molecules in selected quantum states can be guided, decelerated and trapped using electric fields created by microstructured electrodes on a chip. One of the possible applications of such molecules on a chip is their use in future quantum computers. However, to achieve this, researchers must be able to drive transitions from a certain quantum state to another one, that is, they should to be able "to switch a qubit (or quantum bit)". A transition between two rotational levels in a molecule is very well suited for this, and that is the reason why Gabriele Santambrogio and co-workers at the Fritz Haber Institute of the Max Planck Society in Berlin and Liam Duffy of the University of North Carolina at Greensboro decided to use a rather uncommon narrowband terahertz (THz) source to induce rotational transitions in laser-prepared metastable CO molecules. The researchers coupled the source to a chip setup that had been previously developed by them and studied the transitions between two quantum states in polar molecules trapped on the chip.


Unique Approach

According to co-author Gerard Meijer, both the experimental approach and the results of this work are unique. The combination of laser-prepared molecules in a single rotational level, tunable narrow-band mm-wave radiation that can transfer the population to another rotational level, and state-selective detection of the molecules at a known delay and position, offers many interesting possibilities. With this approach, the research team has not only been able to trap the polar molecules on a chip but has also played further games with them like inducing the rotational transitions. Meijer believes that these results could find important applications in quantum computing: "In the future, it is conceivable that compact THz sources are integrated on a chip, and that one can use this to switch between qubits in a routine fashion", he says.

####

Copyright © Wiley-VCH Verlag GmbH & Co. KGaA

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Driving Rotational Transitions in Molecules on a Chip

Related News Press

News and information

March 2016; 6th Int'l Conference on Nanostructures in Iran July 29th, 2015

Non-Enzyme Sensor Determines Level of Blood Sugar July 29th, 2015

Flexible Future of Point-of-Care Disease Diagnostic July 29th, 2015

Meet the high-performance single-molecule diode: Major milestone in molecular electronics scored by Berkeley Lab and Columbia University team July 29th, 2015

Chip Technology

March 2016; 6th Int'l Conference on Nanostructures in Iran July 29th, 2015

Meet the high-performance single-molecule diode: Major milestone in molecular electronics scored by Berkeley Lab and Columbia University team July 29th, 2015

Nanometrics Announces Upcoming Investor Events July 28th, 2015

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

Quantum Computing

Quantum networks: Back and forth are not equal distances! July 28th, 2015

The quantum middle man July 2nd, 2015

Freezing single atoms to absolute zero with microwaves brings quantum technology closer: Atoms frozen to absolute zero using microwaves July 2nd, 2015

Producing spin-entangled electrons July 2nd, 2015

Announcements

Non-Enzyme Sensor Determines Level of Blood Sugar July 29th, 2015

Flexible Future of Point-of-Care Disease Diagnostic July 29th, 2015

Meet the high-performance single-molecule diode: Major milestone in molecular electronics scored by Berkeley Lab and Columbia University team July 29th, 2015

Detecting small metallic contaminants in food via magnetization: A practical metallic-contaminant detecting system using three high-Tc RF superconducting quantum interference devices (SQUIDs) July 29th, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Non-Enzyme Sensor Determines Level of Blood Sugar July 29th, 2015

Flexible Future of Point-of-Care Disease Diagnostic July 29th, 2015

Meet the high-performance single-molecule diode: Major milestone in molecular electronics scored by Berkeley Lab and Columbia University team July 29th, 2015

Detecting small metallic contaminants in food via magnetization: A practical metallic-contaminant detecting system using three high-Tc RF superconducting quantum interference devices (SQUIDs) July 29th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project