Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > "Engineered" Breast Aims to Improve Nanoparticle Testings

Abstract:
Researchers from Purdue University has reproduced portions of the female breast in a tiny slide-sized model dubbed "breast on-a-chip" that will be used to test nanoparticle-based approaches for the detection and treatment of breast cancer. The model mimics the branching mammary duct system, where most breast cancers begin, and will serve as an "engineered organ" to study the use of nanoparticles to detect and target tumor cells within the ducts.

"Engineered" Breast Aims to Improve Nanoparticle Testings

Bethesda, MD | Posted on February 23rd, 2011

Sophie Lelièvre and James Leary led the team of investigators that created the breast-on-a-chip model. The details of their work appear in the journal Integrative Biology.

"We've known that the best way to detect this cancer early and treat it effectively would be to get inside the mammary ducts to evaluate and treat the cells directly, and this is the first step in that direction," said Dr. Lelièvre. The ultimate goal of this project is to introduce magnetic nanoparticles through openings in the nipple, use a magnetic field to guide them through the ducts where they would attach to cancer cells, and then reverse the magnetic field to retract any excess nanoparticles. The nanoparticles could carry contrast agents to improve mammography, fluorescent markers to guide surgeons, or anticancer agents to treat the cancer, Dr. Leary said.

Physicians have tried to access the mammary ducts through the nipple in the past, injecting fluid solutions to try to wash out cells that could be examined and used for a diagnosis of cancer. However, this approach could only reach the first third of the breast due to fluid pressure from the ducts, which branch and become smaller and smaller as they approach the glands that produce milk, Dr. Leary said. "The idea is that nanoparticles with a magnetic core can float through the naturally occurring fluid in the ducts and be pulled by a magnet as opposed to being pushed with pressure," he said. "We think they could reach all the way to the back of the ducts, where it is believed most breast cancers originate. Of course, we are only at the earliest stages and many tests need to be done."

Such tests could not be done using standard models that grow cells across a flat surface in a plastic dish, so the team created the artificial organ-like model in which living cells line a three-dimensional replica of the smallest portions of the mammary ducts. Dr. Leary's group used standard lithographic techniques to build a mold of branching channels out of a rubberlike material called polydimethylsiloxane. The channels are about 5 millimeters long of various diameters from 20 microns to 100 microns, roughly the diameter of a human hair, that match what is found near the end of the mammary duct system. Then, Dr. Lelièvre, whose group is one of the few in the world able to successfully grow the complicated cells that line the mammary ducts, coaxed the cells to grow within the mold and behave as they would within a real human breast.

"The cells within the breast ductal system have a very specific organization that has proven difficult to obtain in a laboratory," Dr. Lelièvre said. "The cells have different sides, and one side must face the wall of the duct and the other must face the inner channel. Reproducing this behavior is very challenging, and it had never been achieved on an artificial structure before."

The team coated the mold in a protein-based substance called laminin 111 as a foundation for the cells that allows them to attach to the mold and behave as they would inside the body, Dr. Lelièvre said. And because injecting the delicate cells into the finished channels of the mold caused too much damage, the team created a removable top for the channels. "The design of the U-shaped channels and top was necessary for us to be able to successfully apply the cells, but it also allows us to make changes quickly and easily for different tests," she explained. "We can easily introduce changes among the cells or insert a few tumor cells to test the abilities of the nanoparticles to recognize them. The design also makes it very easy to evaluate the results as the entire model fits under a microscope."

####

About The National Cancer Institute (NCI)
The NCI Alliance for Nanotechnology in Cancer is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat, and prevent cancer. Through its programs and initiatives, the Alliance is committed to building a community of researchers dedicated to using nanotechnology to advance the fight against cancer.

As part of the Center for Strategic Scientific Initiatives, the Alliance for Nanotechnology in Cancer works in concert with other NCI advanced technology initiatives to provide the scientific foundation and team science that is required to transform cancer research and care.

For more information, please click here

Contacts:
National Cancer Institute
Center for Strategic Scientific Initiatives
NCI Office of Cancer Nanotechnology Research (OCNR)
Building 31, Room 10A52
31 Center Drive, MSC 2580
Bethesda, MD 20892-2580
Telephone: (301) 451-8983

Copyright © The National Cancer Institute (NCI)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View abstract - "Breast on-a-chip: mimicry of the channeling system of the breast for development of theranostics."

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Nanomedicine

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project