Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Handheld nanoLAB Suitable for In-Home Use Detects Disease Proteins in Minutes

Abstract:
In 2009, Stanford University faculty member Shan Wang and doctoral students Richard Gaster and Drew Hall demonstrated that they could use the same ultrasensitive magnetic sensors that form the basis of today's compact, high-capacity disk drives in combination with mass-produced magnetic nanotags to detect small amounts of cancer-associated protein.

Handheld nanoLAB Suitable for In-Home Use Detects Disease Proteins in Minutes

Bethesda, MD | Posted on February 23rd, 2011

Now, in a paper published in the journal Lab on a Chip, the three scientists show how they shrunk this technology to create a handheld disease-detection device that any individual should be able to use at home to detect illness and even monitor the effectiveness of anticancer therapy. Dr. Wang is the co-principal investigator of the Center for Cancer Nanotechnology Excellence and Translation, one of nine such centers funded by the National Cancer Institute.

The device, which the researchers have named the nanoLAB, consists of a disposable "stick" that resembles a home pregnancy test, and a handheld magnetic reader that analyzes a patient's urine, blood, or saliva for the presence of specific disease-associated proteins. In its current design, the nanoLAB can provide simultaneous yes-no answers for up to eight different disease-associated proteins. The handheld sensor unit costs less than $200 to produce, while the sticks capable of making eight measurements cost less than $3.50 each, and could drop to under $1 apiece with improvements already in the works. When Dr. Wang's students built the first version of this device, it occupied an entire room. One component, the electromagnet, weighed over 200 pounds by itself and had to be plugged into a wall outlet. Batteries power the device in its new form.

To conduct a test using the nanoLab, a person would add a drop of biological sample - urine or blood, for example - on the stick. They would then add the contents of two premeasured vials to the stick and then wait 15 minutes for results to appear in the form of a lit LED light on the sensor unit. A pre-programmed microprocessor handles all data analysis and generates the yes-no signal visible as either a green or red light.

####

About The National Cancer Institute (NCI)
The NCI Alliance for Nanotechnology in Cancer is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat, and prevent cancer. Through its programs and initiatives, the Alliance is committed to building a community of researchers dedicated to using nanotechnology to advance the fight against cancer.

As part of the Center for Strategic Scientific Initiatives, the Alliance for Nanotechnology in Cancer works in concert with other NCI advanced technology initiatives to provide the scientific foundation and team science that is required to transform cancer research and care.

For more information, please click here

Contacts:
National Cancer Institute
Center for Strategic Scientific Initiatives
NCI Office of Cancer Nanotechnology Research (OCNR)
Building 31, Room 10A52
31 Center Drive, MSC 2580
Bethesda, MD 20892-2580
Telephone: (301) 451-8983

Copyright © The National Cancer Institute (NCI)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View abstract - "nanoLAB: An ultraportable, handheld diagnostic laboratory for global health."

Related News Press

News and information

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Nanomedicine

Arrowhead Pharmaceuticals to Webcast Fiscal 2016 Year End Results December 7th, 2016

Fast, efficient sperm tails inspire nanobiotechnology December 5th, 2016

Journal Nanotechnology Progress International (JONPI) Volume 6, issue 2 coming out soon! December 5th, 2016

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Sensors

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Tip-assisted chemistry enables chemical reactions at femtoliter scale November 16th, 2016

'Back to the Future' inspires solar nanotech-powered clothing November 15th, 2016

Discoveries

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Announcements

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project