Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanoparticles Increase Survival After Blood Loss

Joel Friedman, M.D., Ph.D.
Joel Friedman, M.D., Ph.D.

Abstract:
In an advance that could improve battlefield and trauma care, scientists at Albert Einstein College of Medicine of Yeshiva University have used tiny particles called nanoparticles to improve survival after life-threatening blood loss. Nanoparticles containing nitric oxide (NO) were infused into the bloodstream of hamsters, where they helped maintain blood circulation and protect vital organs. The research was reported today in the journal Resuscitation.

Nanoparticles Increase Survival After Blood Loss

Bronx, NY | Posted on February 22nd, 2011

The new nanomedicine was developed to address the need for better field treatments for massive human blood loss, which can cause cardiovascular collapse, also known as hemorrhagic shock. This potentially fatal condition is best treated with infusions of refrigerated blood and other fluids. But such treatments are limited to emergency rooms or trauma centers.

"It is highly impractical to pack these supplies for use in rural emergencies, mass-casualty disasters or on the battlefield," said coauthor Joel Friedman, M.D., Ph.D., professor of physiology & medicine and of medicine and the Young Men's Division Chair in Physiology at Einstein. "Our nanoparticle therapy may offer the potential for saving lives in those situations. It's lightweight and compact and doesn't require refrigeration."

The new therapy counters hemorrhagic shock by increasing the body's levels of NO gas, which, among other physiological functions, relaxes blood vessels and regulates blood pressure. The gas was encased in microscopic-sized particles that were specially designed by the Einstein team. (NO is so short-lived that delivering it in therapeutic amounts requires a method of sustained release.) The therapy is created by adding the NO-containing nanoparticles to saline solution, which was then infused into the animals. Once in the body, the nanoparticles gradually release a sustained dose of NO to tissues.

The new nanomedicine was successfully tested in hamsters that had lost half their blood volume. "Animals given the nanoparticles exhibited better cardiac stability, stronger blood flow to tissues and other measures of hemorrhagic shock recovery compared to controls receiving saline solution minus the nanoparticles," reported Dr. Friedman.

Previously published studies by Dr. Friedman and colleagues have demonstrated the beneficial effects of NO-containing nanoparticles for healing antibiotic-resistant staph infections and abscess caused by those bacteria and for treating erectile dysfunction.

The paper, "Exogenous Nitric Oxide Prevents Cardiovascular Collapse During Hemorrhagic Shock," appears in the Februrary 16, 2011 online edition of Resuscitation. Other Einstein authors of the study were Adam Friedman, M.D. and Parimala Nachuraju, Ph.D. Coauthor Pedro Cabrales, Ph.D., of the department of bioengineering at the University of California, San Diego, California, carried out the animal studies.

####

For more information, please click here

Contacts:
Kim Newman
Media Relations Specialist
Albert Einstein College of Medicine
office (718) 430-4137
cell (347) 828-0746

Copyright © Albert Einstein College of Medicine of Yeshiva University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

CEA-Leti Reports Machine-Learning Breakthrough That Opens Way to Edge Learning: Article in Nature Electronics Details Method that Takes Advantage of RRAM Non-Idealities To Create Intelligent Systems that Have Potential Medical-Diagnostic Applications January 20th, 2021

Arrowhead Pharmaceuticals to Webcast Fiscal 2021 First Quarter Results January 20th, 2021

Scientists synthetize new material for high-performance supercapacitors January 19th, 2021

Keeping the costs of superconducting magnets down using ultrasound: Scientists show ultrasonication is a cost-effective approach to enhance the properties of magnesium diboride superconductors January 15th, 2021

Possible Futures

CEA-Leti Reports Machine-Learning Breakthrough That Opens Way to Edge Learning: Article in Nature Electronics Details Method that Takes Advantage of RRAM Non-Idealities To Create Intelligent Systems that Have Potential Medical-Diagnostic Applications January 20th, 2021

Arrowhead Pharmaceuticals to Webcast Fiscal 2021 First Quarter Results January 20th, 2021

Scientists synthetize new material for high-performance supercapacitors January 19th, 2021

Keeping the costs of superconducting magnets down using ultrasound: Scientists show ultrasonication is a cost-effective approach to enhance the properties of magnesium diboride superconductors January 15th, 2021

Academic/Education

NSF renews Rice-based NEWT Center for water treatment: Partnership primed to introduce game-changing technologies to address global needs October 15th, 2020

Matching Investment Program (MIP) Leverages $140K Empire State Development/NYSTAR Funding to SUNY Polyís CATN2 to Enable $1.5M in Matching Commitments from Industry Partners: Investment Funds Faculty Research Related to Advanced Materials, Genomics, and Semiconductor Reliability October 18th, 2019

A Quantum Leap: $25M grant makes UC Santa Barbara home to the nationís first NSF-funded Quantum Foundry, a center for development of materials for quantum information-based technologies September 16th, 2019

LPU signs MoU with Bruker India for Research Cooperation in Nanotechnology and Material Science September 3rd, 2019

Nanomedicine

Arrowhead Pharmaceuticals to Webcast Fiscal 2021 First Quarter Results January 20th, 2021

Chemists invent shape-shifting nanomaterial with biomedical potential It converts from sheets to tubes and back in a controllable fashion January 13th, 2021

Nanocrystals that eradicate bacteria biofilm January 8th, 2021

Detecting COVID-19 antibodies in 10-12 seconds January 8th, 2021

Announcements

CEA-Leti Reports Machine-Learning Breakthrough That Opens Way to Edge Learning: Article in Nature Electronics Details Method that Takes Advantage of RRAM Non-Idealities To Create Intelligent Systems that Have Potential Medical-Diagnostic Applications January 20th, 2021

Arrowhead Pharmaceuticals to Webcast Fiscal 2021 First Quarter Results January 20th, 2021

Scientists synthetize new material for high-performance supercapacitors January 19th, 2021

Keeping the costs of superconducting magnets down using ultrasound: Scientists show ultrasonication is a cost-effective approach to enhance the properties of magnesium diboride superconductors January 15th, 2021

Nanobiotechnology

Arrowhead Pharmaceuticals to Webcast Fiscal 2021 First Quarter Results January 20th, 2021

Chemists invent shape-shifting nanomaterial with biomedical potential It converts from sheets to tubes and back in a controllable fashion January 13th, 2021

Nanocrystals that eradicate bacteria biofilm January 8th, 2021

Detecting COVID-19 antibodies in 10-12 seconds January 8th, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project