Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanoparticles Increase Survival After Blood Loss

Joel Friedman, M.D., Ph.D.
Joel Friedman, M.D., Ph.D.

Abstract:
In an advance that could improve battlefield and trauma care, scientists at Albert Einstein College of Medicine of Yeshiva University have used tiny particles called nanoparticles to improve survival after life-threatening blood loss. Nanoparticles containing nitric oxide (NO) were infused into the bloodstream of hamsters, where they helped maintain blood circulation and protect vital organs. The research was reported today in the journal Resuscitation.

Nanoparticles Increase Survival After Blood Loss

Bronx, NY | Posted on February 22nd, 2011

The new nanomedicine was developed to address the need for better field treatments for massive human blood loss, which can cause cardiovascular collapse, also known as hemorrhagic shock. This potentially fatal condition is best treated with infusions of refrigerated blood and other fluids. But such treatments are limited to emergency rooms or trauma centers.

"It is highly impractical to pack these supplies for use in rural emergencies, mass-casualty disasters or on the battlefield," said coauthor Joel Friedman, M.D., Ph.D., professor of physiology & medicine and of medicine and the Young Men's Division Chair in Physiology at Einstein. "Our nanoparticle therapy may offer the potential for saving lives in those situations. It's lightweight and compact and doesn't require refrigeration."

The new therapy counters hemorrhagic shock by increasing the body's levels of NO gas, which, among other physiological functions, relaxes blood vessels and regulates blood pressure. The gas was encased in microscopic-sized particles that were specially designed by the Einstein team. (NO is so short-lived that delivering it in therapeutic amounts requires a method of sustained release.) The therapy is created by adding the NO-containing nanoparticles to saline solution, which was then infused into the animals. Once in the body, the nanoparticles gradually release a sustained dose of NO to tissues.

The new nanomedicine was successfully tested in hamsters that had lost half their blood volume. "Animals given the nanoparticles exhibited better cardiac stability, stronger blood flow to tissues and other measures of hemorrhagic shock recovery compared to controls receiving saline solution minus the nanoparticles," reported Dr. Friedman.

Previously published studies by Dr. Friedman and colleagues have demonstrated the beneficial effects of NO-containing nanoparticles for healing antibiotic-resistant staph infections and abscess caused by those bacteria and for treating erectile dysfunction.

The paper, "Exogenous Nitric Oxide Prevents Cardiovascular Collapse During Hemorrhagic Shock," appears in the Februrary 16, 2011 online edition of Resuscitation. Other Einstein authors of the study were Adam Friedman, M.D. and Parimala Nachuraju, Ph.D. Coauthor Pedro Cabrales, Ph.D., of the department of bioengineering at the University of California, San Diego, California, carried out the animal studies.

####

For more information, please click here

Contacts:
Kim Newman
Media Relations Specialist
Albert Einstein College of Medicine
office (718) 430-4137
cell (347) 828-0746

Copyright © Albert Einstein College of Medicine of Yeshiva University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Engineering piezoelectricity and strain sensitivity in CdS to promote piezocatalytic hydrogen evolution May 13th, 2022

New nanomechanical oscillators with record-low loss May 13th, 2022

Small microring array enables large complex-valued matrix multiplication May 13th, 2022

Study finds nanomedicine targeting lymph nodes key to triple negative breast cancer treatment: In mice, nanomedicine can remodel the immune microenvironment in lymph node and tumor tissue for long-term remission and lung tumor elimination in this form of metastasized breast cance May 13th, 2022

Possible Futures

Engineering piezoelectricity and strain sensitivity in CdS to promote piezocatalytic hydrogen evolution May 13th, 2022

New nanomechanical oscillators with record-low loss May 13th, 2022

Small microring array enables large complex-valued matrix multiplication May 13th, 2022

Study finds nanomedicine targeting lymph nodes key to triple negative breast cancer treatment: In mice, nanomedicine can remodel the immune microenvironment in lymph node and tumor tissue for long-term remission and lung tumor elimination in this form of metastasized breast cance May 13th, 2022

Academic/Education

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Lifeboat Foundation Guardian Winner Jeff Bezos Donates One Million to Lifeboat Foundation Dream Project Winner Teachers in Space July 30th, 2021

NSF renews Rice-based NEWT Center for water treatment: Partnership primed to introduce game-changing technologies to address global needs October 15th, 2020

Matching Investment Program (MIP) Leverages $140K Empire State Development/NYSTAR Funding to SUNY Poly’s CATN2 to Enable $1.5M in Matching Commitments from Industry Partners: Investment Funds Faculty Research Related to Advanced Materials, Genomics, and Semiconductor Reliability October 18th, 2019

Nanomedicine

Oregon State University research pushes closer to new therapy for pancreatic cancer May 6th, 2022

‘Smart’ diaper for bedside urine testing Peer-Reviewed Publication May 6th, 2022

New miniature heart could help speed heart disease cures: Boston University–led team has engineered a tiny living heart chamber replica to more accurately mimic the real organ and provide a sandbox for testing new heart disease treatments April 22nd, 2022

Injectable stem cell assembly for cartilage regeneration April 15th, 2022

Announcements

Engineering piezoelectricity and strain sensitivity in CdS to promote piezocatalytic hydrogen evolution May 13th, 2022

New nanomechanical oscillators with record-low loss May 13th, 2022

Small microring array enables large complex-valued matrix multiplication May 13th, 2022

Study finds nanomedicine targeting lymph nodes key to triple negative breast cancer treatment: In mice, nanomedicine can remodel the immune microenvironment in lymph node and tumor tissue for long-term remission and lung tumor elimination in this form of metastasized breast cance May 13th, 2022

Nanobiotechnology

Oregon State University research pushes closer to new therapy for pancreatic cancer May 6th, 2022

‘Smart’ diaper for bedside urine testing Peer-Reviewed Publication May 6th, 2022

New miniature heart could help speed heart disease cures: Boston University–led team has engineered a tiny living heart chamber replica to more accurately mimic the real organ and provide a sandbox for testing new heart disease treatments April 22nd, 2022

Injectable stem cell assembly for cartilage regeneration April 15th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project