Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Simpler way of making proteins could lead to new nanomedicine agents

Researchers found that elongating side chains with charged ends enabled short proteins to coil into a stable helix. | Image courtesy Jianjun
Researchers found that elongating side chains with charged ends enabled short proteins to coil into a stable helix. | Image courtesy Jianjun

Abstract:
Researchers have developed a simple method of making short protein chains with spiral structures that can also dissolve in water, two desirable traits not often found together. Such structures could have applications as building blocks for self-assembling nanostructures and as agents for drug and gene delivery.

Simpler way of making proteins could lead to new nanomedicine agents

Champaign, IL | Posted on February 22nd, 2011

Led by Jianjun Cheng, a professor of materials science and engineering at the University of Illinois, the research team will publish its findings in the Jan. 22 edition of the journal Nature Communications.

Materials scientists have been interested in designing large polymer molecules that could be used as building blocks for self-assembling structures. The challenge has been that the molecules generally adopt a globular, spherical shape, limiting their ability to form orderly aggregates. However, polypeptides - chains of amino acids such as proteins - can form helical structures. Short polypeptide chains that adopt a spiral shape act like cylindrical rods.

"If you have two rigid rods, one positive and one negative, right next to each other, they're going to stick to each other. If you have a way to put the charge on the surface then they can pack together in a close, compact way, so they form a three-dimensional structure," Cheng said.

However, it is difficult to make helical polypeptides that are water-soluble so they can be used in solution. Polypeptides gain their solubility from side chains - molecular structures that stem from each amino acid link in the polypeptide chain. Amino acids with positive or negative charges in their side chains are needed to make a polypeptide disperse in water.

The problem arises when chains with charged side chains form helical structures. The charges cause a strong repulsion between the side chains, which destabilizes the helical conformation. This causes water-soluble polypeptides to form random coil structures instead of the desired helices.

In exploring solutions to the riddle of helical, water-soluble polypeptides, researchers have tried several complicated methods. For example, scientists have attempted grafting highly water-soluble chemicals to the side chains to increase the polypeptides' overall solubility, or creating helices with charges only on one side.

"You can achieve the helical structure and the solubility but you have to design the helical structure in a very special way. The peptide design needs a very specific sequence. Then you're very limited in the type of polypeptide you can build, and it's not easy to design or handle these polypeptides," Cheng said.

In contrast, Cheng's group developed a very straightforward solution. Since the close proximity of the charges causes the repulsion that disrupts the helix, the researchers simply elongated the side chains, moving the charges farther from the backbone and giving them more freedom to keep their distance from one another.

The researchers observed that as they increased the length of the side chains with charges on the end, the polypeptides' propensity for forming helices also increased.

"It's such a simple idea - move the charge away from the backbone," Cheng said. "It's not difficult at all to make the longer side chains, and it has amazing properties for winding up helical structures simply by pushing the distance between the charge and the backbone."


The group found that not only do polypeptides with long side chains form helices, they display remarkable stability even when compared to non-charged helices. The helices seem immune to temperature, pH, and other denaturing agents that would unwind most polypeptides.

This may explain why amino acids with large hydrophobic side chains are not found in nature. Such immutability would preclude dynamic winding and unwinding of protein structures, which is essential to many biological processes. However, rigid stability is a desirable trait for the types of applications Cheng's group explores: nanostructures for drug and gene delivery, particularly targeting cancerous tumors and stem cells.

"We want to test the correlation of the lengths of the helices and the circulation in the body to see what's the impact of the shape and the charge and the side chains for clearance in the body," Cheng said. "Recent studies show that the aspect ratio of the nanostructures - spherical structures versus tubes - has a huge impact on their penetration of tumor tissues and circulation half-lives in the body."

Cheng plans to create a library of short helical polypeptides of varying backbone lengths, side chain lengths and types of charge. He hopes to simplify the chemistry even further and make the materials widely accessible. His lab already has demonstrated that helical structures can be effective gene delivery and membrane transduction agents, and building the library of soluble helical molecules will allow further investigation of tailoring such nanostructures for specific biomedical applications.

The National Science Foundation and the National Institutes of Health supported this work. Illinois co-authors were graduate students Hua Lu and Yugang Bai and undergraduate student Jason Lang. "Hua Lu, a fifth year graduate student in my group, is the first author of the publication and made the most significant contribution to this work," Cheng said. Yao Lin and Jin Wang, of the University of Connecticut, and professor Shiyong Liu, of the University of Science and Technology of China, also collaborated with Cheng's group on the paper.

####

For more information, please click here

Contacts:
Jianjun Cheng
217-244-3924

Copyright © University of Illinois

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

First detailed microscopy evidence of bacteria at the lower size limit of life: Berkeley Lab research provides comprehensive description of ultra-small bacteria February 28th, 2015

Leti to Offer Updates on Silicon Photonics Successes at OFC in LA February 27th, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Govt.-Legislation/Regulation/Funding/Policy

First detailed microscopy evidence of bacteria at the lower size limit of life: Berkeley Lab research provides comprehensive description of ultra-small bacteria February 28th, 2015

Warming up the world of superconductors: Clusters of aluminum metal atoms become superconductive at surprisingly high temperatures February 25th, 2015

SUNY Poly CNSE Researchers and Corporate Partners to Present Forty Papers at Globally Recognized Lithography Conference: SUNY Poly CNSE Research Group Awarded Both ‘Best Research Paper’ and ‘Best Research Poster’ at SPIE Advanced Lithography 2015 forum February 25th, 2015

European roadmap for graphene science and technology published February 25th, 2015

Possible Futures

European roadmap for graphene science and technology published February 25th, 2015

Quantum research past, present and future for discussion at AAAS February 16th, 2015

World’s first compact rotary 3D printer-cum-scanner unveiled at AAAS by NTU Singapore start-up: With production funded by crowdsourcing, the first unit will be delivered to the United States in March February 16th, 2015

Nanotechnology Electric Vehicle (EV) Market Analysis Report 2015: According to Radiant Insights, Inc February 13th, 2015

Academic/Education

NanoTecNexus Launches New App for Learning About Nanotechnology—STEM Education Project Spearheaded by Interns February 26th, 2015

SUNY Poly CNSE Researchers and Corporate Partners to Present Forty Papers at Globally Recognized Lithography Conference: SUNY Poly CNSE Research Group Awarded Both ‘Best Research Paper’ and ‘Best Research Poster’ at SPIE Advanced Lithography 2015 forum February 25th, 2015

KIT Increases Commitment in Asia: DAAD Funds Two New Projects: Strategic Partnerships with Chinese Universities and Communi-cation Technologies Network February 22nd, 2015

Minus K Technology Announces Its 2015 Vibration Isolator Educational Giveaway to U.S. Colleges and Universities February 18th, 2015

Self Assembly

Nanotubes self-organize and wiggle: Evolution of a nonequilibrium system demonstrates MEPP February 10th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

Revealed: How bacteria drill into our cells and kill them December 2nd, 2014

Live Images from the Nano-cosmos: Researchers watch layers of football molecules grow November 5th, 2014

Nanomedicine

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Cutting-edge technology optimizes cancer therapy with nanomedicine drug combinations: UCLA bioengineers develop platform that offers personalized approach to treatment February 24th, 2015

Optical nanoantennas set the stage for a NEMS lab-on-a-chip revolution February 24th, 2015

Announcements

First detailed microscopy evidence of bacteria at the lower size limit of life: Berkeley Lab research provides comprehensive description of ultra-small bacteria February 28th, 2015

Leti to Offer Updates on Silicon Photonics Successes at OFC in LA February 27th, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Nanobiotechnology

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Bacteria network for food: Bacteria connect to each other and exchange nutrients February 23rd, 2015

Building tailor-made DNA nanotubes step by step: New, block-by-block assembly method could pave way for applications in opto-electronics, drug delivery February 23rd, 2015

Better batteries inspired by lowly snail shells: Biological molecules can latch onto nanoscale components and lock them into position to make high performing Li-ion battery electrodes, according to new research presented at the 59th annual meeting of the Biophysical Society February 12th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE