Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Researchers Discover a New Class of Magic Atomic Clusters Called Superhalogens

This image illustrates MnxCl2x+1clusters - new class of magnetic superhalogens.The violet and green spheres represent Mn and Cl atoms, respectively. Image courtesy of Puru Jena, Ph.D./VCU, and Anil Kandalam, Ph.D./McNeese State University.
This image illustrates MnxCl2x+1clusters - new class of magnetic superhalogens.The violet and green spheres represent Mn and Cl atoms, respectively. Image courtesy of Puru Jena, Ph.D./VCU, and Anil Kandalam, Ph.D./McNeese State University.

Abstract:
An international team of researchers has discovered a new class of magnetic superhalogens - a class of atomic clusters able to exhibit unusual stability at a specific size and composition, which may be used to advance materials science by allowing scientists to create a new class of salts with magnetic and super-oxidizing properties not previously found.

by Sathya Achia Abraham, VCU Communications and Public Relations

Researchers Discover a New Class of Magic Atomic Clusters Called Superhalogens

Richmond, VA | Posted on February 15th, 2011

The discovery, which was published Feb. 10 in the Early View issue of the international chemistry journal Angewandte Chemie International Edition, was based on theoretical work by researchers from Virginia Commonwealth University, McNeese State University, and Peking University in China, and experimental work at Johns Hopkins University.

Unlike conventional superhalogens that are composed of a metal atom at the core and surrounded by halogen atoms, the magnetic superhalogens discovered by this team are composed of stoichiometric metal-halogen moieties at the core to which an additional halogen is attached.

The new chemical species known as magnetic superhalogens mimic the chemistry of halogens which are a class of elements from the periodic table, namely, iodine, astatine, bromine, fluorine and chlorine. The word halogen means "salt-former," and when one of the elements above combines with sodium, they can form a salt.

Specifically, the cluster is MnxCl2x+1, where x = 1, 2, 3, and so on, have manganese and chlorine atoms as a core to which only one chlorine atom is attached. The manganese atoms carry a large magnetic moment and therefore make these superhalogens magnetic.

"One can now design and synthesize yet unknown magnetic superhalogens by changing the metal atom from manganese to other transition metal atoms and changing chlorine to other halogen atoms. In addition to their use as oxidizing agents, being magnetic opens the door to the synthesis a new class of salts," said lead investigator Puru Jena, Ph.D., distinguished professor of physics at VCU.

According to Jena, superhalogens are like halogens, in the sense they form negative ions, but their affinity to attract electrons is far greater than those of any halogen atoms. Negative ions are useful as oxidizing agents, for purification of air and in serotonin release for uplifting mood.

"Superhalogens can do the same thing as halogens can do, only better," said Jena. "The ability of superhalogens to carry large quantities of fluorine and chlorine can be used for combating biological agents as well."

"In addition, superhalogens, due to their large electron affinity, can involve inner core electrons of metal atoms in chemical reaction, thus fundamentally giving rise to new chemistry," said Jena.

In October, Jena and his colleagues reported the discovery of a new class of highly electronegative chemical species called hyperhalogens, which use superhalogens as building blocks around a metal atom. The chemical species may have application in many industries.

Jena collaborated with researchers Qian Wang, Ph.D., with the Department of Physics at VCU; Kiran Boggavarapu, Ph.D., with the Department of Chemistry at McNeese State University, and Anil K. Kandalam, Ph.D., with the Department of Physics at McNeese State University; Qiang Sun, Ph.D., and graduate student, Miao Miao Wu, with VCU's Department of Physics at Peking University; and Haopeng Wang and Yeon Jae Ko, both graduate students, and Kit H. Bowen, Ph.D., all with the Department of Chemistry at Johns Hopkins University.

The work was supported in part by the federal Defense Threat Reduction Agency and the Department of Energy.

####

About Virginia Commonwealth University
Virginia Commonwealth University is a major, urban public research university with national and international rankings in sponsored research. Located on two downtown campuses in Richmond, VCU enrolls more than 32,000 students in 211 certificate and degree programs in the arts, sciences and humanities. Sixty-nine of the programs are unique in Virginia, many of them crossing the disciplines of VCU’s 13 schools and one college. MCV Hospitals and the health sciences schools of Virginia Commonwealth University compose the VCU Medical Center, one of the nation’s leading academic medical centers.

For more information, please click here

Copyright © Virginia Commonwealth University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Chains of nanogold – forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Nanotech Grants Options September 22nd, 2016

Coffee-infused foam removes lead from contaminated water September 21st, 2016

Chemistry

Chains of nanogold – forged with atomic precision September 23rd, 2016

Govt.-Legislation/Regulation/Funding/Policy

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

PHENOMEN is a FET-Open Research Project aiming to lay the foundations a new information technology September 19th, 2016

NIST Patents Single-Photon Detector for Potential Encryption and Sensing Apps September 16th, 2016

Electron beam microscope directly writes nanoscale features in liquid with metal ink September 16th, 2016

Possible Futures

Chains of nanogold – forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Coffee-infused foam removes lead from contaminated water September 21st, 2016

Towards Stable Propagation of Light in Nano-Photonic Fibers September 20th, 2016

Academic/Education

PHENOMEN is a FET-Open Research Project aiming to lay the foundations a new information technology September 19th, 2016

AIM Photonics Announces Release of Process Design Kit (PDK) for Integrated Silicon Photonics Design August 25th, 2016

Nanotech Security Featured by Simon Fraser University: Company's Anti-Counterfeiting Technology Developed With the Help of University's 4D LABS Materials Research Institute August 21st, 2016

W.M. Keck Foundation awards Cal State LA a $375,000 research and education grant August 4th, 2016

Discoveries

Chains of nanogold – forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Speedy bacteria detector could help prevent foodborne illnesses September 21st, 2016

Coffee-infused foam removes lead from contaminated water September 21st, 2016

Announcements

Chains of nanogold – forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Nanotech Grants Options September 22nd, 2016

Coffee-infused foam removes lead from contaminated water September 21st, 2016

Industrial

Mathematical nanotoxicoproteomics: Quantitative characterization of effects of multi-walled carbon nanotubes: This research article by Dr. Subhash Basak et al. will be published in Current Computer-Aided Drug Design, Volume 12, 2016 September 2nd, 2016

New flexible material can make any window 'smart' August 23rd, 2016

Industrial Nanotech, Inc. Provides Shareholder Update August 22nd, 2016

Let's roll: Material for polymer solar cells may lend itself to large-area processing: 'Sweet spot' for mass-producing polymer solar cells may be far larger than dictated by the conventional wisdom August 12th, 2016

Research partnerships

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Graphene nanoribbons show promise for healing spinal injuries: Rice University scientists develop Texas-PEG to help knit severed, damaged spinal cords September 19th, 2016

NIST Patents Single-Photon Detector for Potential Encryption and Sensing Apps September 16th, 2016

Semiconducting inorganic double helix: New flexible semiconductor for electronics, solar technology and photo catalysis September 15th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic