Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Compact High-Temperature Superconducting Cables Demonstrated at NIST

Cross-section of a high-temperature superconducting cable design invented at NIST. In the center are copper wires bundled with nylon and plastic insulation. The outer rings are a series of superconducting tapes wrapped in spirals around the copper. The cable is 7.5 millimeters in outer diameter.
Credit: van der Laan/NIST
Cross-section of a high-temperature superconducting cable design invented at NIST. In the center are copper wires bundled with nylon and plastic insulation. The outer rings are a series of superconducting tapes wrapped in spirals around the copper. The cable is 7.5 millimeters in outer diameter. Credit: van der Laan/NIST

Abstract:
A researcher at the National Institute of Standards and Technology (NIST) has invented a method of making high-temperature superconducting (HTS) cables that are thinner and more flexible than demonstration HTS cables now installed in the electric power grid while carrying the same or more current. The compact cables could be used in the electric grid as well as scientific and medical equipment and may enable HTS power transmission for military applications.

Compact High-Temperature Superconducting Cables Demonstrated at NIST

Gaithersburg, MD | Posted on February 14th, 2011

Described in a paper just published online,* the new method involves winding multiple HTS-coated conductors** around a multi-strand copper "former" or core. The superconducting layers are wound in spirals in alternating directions. One prototype cable is 6.5 millimeters (mm) in outer diameter and carries a current of 1,200 amperes; a second cable is 7.5 mm in diameter and carries a current as high as 2,800 amperes. They are roughly one-tenth the diameter of typical HTS cables used in the power grid. (Standard electrical transmission lines normally operate at currents below 1,000 amperes.)

HTS materials, which conduct electricity without resistance when cooled sufficiently (below 77 K, or minus 196 C/minus 321 F, for the new cables) with liquid nitrogen or helium gas, are used to boost efficiency in some power grids. The main innovation in the compact cables is the tolerance of newer HTS conductors to compressive strain that allows use of the unusually slender copper former, says developer Danko van der Laan, a University of Colorado scientist working at NIST.

"The knowledge I gained while working at NIST on electromechanical properties of high-temperature superconductors was very important for inventing the initial cable concept," van der Laan says. "For instance, my discovery that the conductor survives large compressive strains*** made me realize that wrapping the conductor around a small diameter former would most likely work."

Van der Laan and NIST colleagues demonstrated the feasibility of the new concept by making several cables and testing their performance. They used an HTS material with a critical current that is less sensitive to strain than some other materials. Although the prototype cables are wound by hand, several manufacturers say mass production is feasible.

NIST researchers are now developing prototype compact HTS cables for the military, which requires small size and light weight as well as flexibility to pull transmission lines through conduits with tight bends. Beside power transmission, the flexible cabling concept could be used for superconducting transformers, generators, and magnetic energy storage devices that require high-current windings. The compact cables also could be used in high-field magnets for fusion and for medical applications such as next-generation magnetic resonance imaging and proton cancer treatment systems.

The work was supported in part by the U.S. Department of Energy.

* D.C. van der Laan, X.F. Lu, and L.F. Goodrich. Compact GdBa2Cu3O7-. coated conductor cables for electric power transmission and magnet applications. Superconductor Science & Technology. 24 042001, doi: 10.1088/0953-2048/24/4/042001.
** The superconducting compound used in the work is gadolinium-barium-copper-oxide, or GdBa2Cu3O7-.
*** See the NIST Feb. 15, 2007, Tech Beat article "Strain Has Major Effect on High-Temp Superconductors," at www.nist.gov/public_affairs/techbeat/tb2007_0215.htm#htc.

####

For more information, please click here

Contacts:
Laura Ost
303-497-4880

Copyright © NIST

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

International research team discovers new mechanism behind malaria progression: Findings provide a new avenue for research in malaria treatment April 27th, 2015

More is less in novel electronic material: Adding electrons actually shrinks the system April 27th, 2015

Graphenea celebrates fifth anniversary April 27th, 2015

Sensor Designed in Iran Able to Remove Formaldehyde Gas from Environment April 27th, 2015

Possible Futures

Printing Silicon on Paper, with Lasers April 21st, 2015

A glass fiber that brings light to a standstill: By coupling photons to atoms, light in a glass fiber can be slowed down to the speed of an express train; for a short while it can even be brought to a complete stop April 9th, 2015

Nanotechnology in Medical Devices Market is expected to reach $8.5 Billion by 2019 March 25th, 2015

Nanotechnology Enabled Drug Delivery to Influence Future Diagnosis and Treatments of Diseases March 21st, 2015

Announcements

Scientists join forces to reveal the mass and shape of single molecules April 27th, 2015

The 16th Trends in Nanotechnology International Conference (TNT 2015) unveils 25 Keynote Speakers: Call for abstracts open April 27th, 2015

Graphenea celebrates fifth anniversary April 27th, 2015

Sensor Designed in Iran Able to Remove Formaldehyde Gas from Environment April 27th, 2015

Military

Two-dimensional semiconductor comes clean April 27th, 2015

Electron spin brings order to high entropy alloys April 23rd, 2015

Engineer improves rechargeable batteries with MoS2 nano 'sandwich' April 18th, 2015

MIT sensor detects spoiled meat: Tiny device could be incorporated into 'smart packaging' to improve food safety April 15th, 2015

Environment

Nanoparticles Used to Improve Mechanical, Thermal Properties of Cellulose Fibers April 23rd, 2015

Young NTU Singapore spin-off clinches S$4.3 million joint venture with Chinese commercial giant March 23rd, 2015

New processing technology converts packing peanuts to battery components March 22nd, 2015

EU Funded PCATDES Project has completed its half-period with success March 19th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project