Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Hydrogels used to make precise new sensor

This diagram depicts a new type of "diffraction-based" sensor made of thin stripes of a gelatinous material called a hydrogel, which expands and contracts depending on the acidity of its environment. The new type of biological and chemical sensor has few moving parts and works by precisely determining pH, revealing the identity of substances in liquid environments such as water or blood. The microscopic images at bottom show how the hydrogel stripes expand with decreasing acidity. (Birck Nanotechnology Center, Purdue University)
This diagram depicts a new type of "diffraction-based" sensor made of thin stripes of a gelatinous material called a hydrogel, which expands and contracts depending on the acidity of its environment. The new type of biological and chemical sensor has few moving parts and works by precisely determining pH, revealing the identity of substances in liquid environments such as water or blood. The microscopic images at bottom show how the hydrogel stripes expand with decreasing acidity. (Birck Nanotechnology Center, Purdue University)

Abstract:
Researchers are developing a new type of biological and chemical sensor that has few moving parts, is low-cost and yet highly sensitive, sturdy and long-lasting.

Hydrogels used to make precise new sensor

West Lafayette, IN | Posted on February 8th, 2011

The "diffraction-based" sensors are made of thin stripes of a gelatinous material called a hydrogel, which expands and contracts depending on the acidity of its environment.

Recent research findings have demonstrated that the sensor can be used to precisely determine pH - a measure of how acidic or basic a liquid is - revealing information about substances in liquid environments, said Cagri Savran (pronounced Chary Savran), an associate professor of mechanical engineering at Purdue University.

The sensor's simple design could make it more practical than other sensors in development, he said.

"Many sensors being developed today are brilliantly designed but are too expensive to produce, require highly skilled operators and are not robust enough to be practical," said Savran, whose work is based at Purdue's Birck Nanotechnology Center in the university's Discovery Park.

New findings show the technology is highly sensitive and might be used in chemical and biological applications including environmental monitoring in waterways and glucose monitoring in blood.

"As with any novel platform, more development is needed, but the detection principle behind this technology is so simple that it wouldn't be difficult to commercialize," said Savran, who is collaborating with another team of researchers led by Babak Ziaie, a Purdue professor of electrical and computer engineering and biomedical engineering.

Findings are detailed in a paper presented during the IEEE Sensors 2010 Conference in November and also published in the conference proceedings. The paper was written by postdoctoral researcher Chun-Li Chang, doctoral student Zhenwen Ding, Ziaie and Savran.

The flexible, water-insoluble hydrogel is formed into a series of raised stripes called a "diffraction grating," which is coated with gold on both the stripe surfaces and the spaces in between. The stripes expand and contract depending on the pH level of the environment.

Researchers in Ziaie's lab fabricated the hydrogel, while Savran's group led work in the design, development and testing of the diffraction-based sensor.

The sensors work by analyzing laser light reflecting off the gold coatings. Reflections from the stripes and spaces in between interfere with each other, creating a "diffraction pattern" that differs depending on the height of the stripes.

These diffraction patterns indicate minute changes in the movement of the hydrogel stripes in response to the environment, in effect measuring changes in pH.

"By precise measurement of pH, the diffraction patterns can reveal a lot of information about the sample environment," said Savran, who by courtesy is an associate professor of biomedical engineering and electrical and computer engineering. "This technology detects very small changes in the swelling of the diffraction grating, which makes them very sensitive."

The pH of a liquid is recorded on a scale from 0 to 14, with 0 being the most acidic and 14 the most basic. Findings showed the device's high sensitivity enables it to resolve changes smaller than one-1,000th on the pH scale, measuring swelling of only a few nanometers. A nanometer is about 50,000 times smaller than the finest sand grain.

"We know we can make them even more sensitive," Savran said. "By using different hydrogels, gratings responsive to stimuli other than pH can also be fabricated."

The work is ongoing.

"It's a good example of collaborations that can blossom when labs focusing on different research are located next to each other," Savran said. "Professor Ziaie's lab was already working with hydrogels, and my group was working on diffraction-based sensors. Hearing about the hydrogels work next door, one of my postdoctoral researchers, Chun-Li Chang thought of making a reflective diffraction grating out of hydrogels."

The Office of Technology Commercialization of the Purdue Research Foundation has filed for U.S. patent protection on the concept.

ABSTRACT

Diffractometric Biochemical Sensing with Smart Hydrogels


Chun-Li Changab, Zhenwen Dingbc, Venkata N. L. R. Patchigollaab, Babak Ziaiebd, and Cagri A. Savranab

aSchool of Mechanical Engineering, bBirck Nanotechnology Center, cDepartment of Physics, dSchool of Electrical and Computer Engineering, Purdue University


We report reflective diffraction gratings made from smart hydrogels for ultrasensitive biochemical detection. As an example for a biochemically responsive hydrogel, we chose a pH-sensitive hydrogel to construct diffraction gratings that swell or shrink due to changes in pH. Interferometric analysis of the grating enabled detection of the hydrogel's swelling/shrinking with nanoscale precision with a resolution of 6×10-4 pH units. The developed system is remarkably simple both to fabricate and operate. Moreover, the concept of the hydrogel grating is generic and can be widely applied to hydrogels responsive to other stimuli.

####

For more information, please click here

Contacts:
Writer:
Emil Venere
765-494-4709


Sources:
Cagri A. Savran
765 494-8601


Babak Ziaie
765-494-0725


Copyright © Purdue University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Aculon Hires New Business Development Director December 19th, 2014

How does enzymatic pretreatment affect the nanostructure and reaction space of lignocellulosic biomass? December 18th, 2014

Silicon Valley-Based Foresight Valuation Launches STR-IP™, a New Initiative for Startups to Discover the Value of Their Intellectual Property December 18th, 2014

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Possible Futures

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Researchers discern the shapes of high-order Brownian motions November 17th, 2014

VDMA Electronics Production Equipment: Growth track for 2014 and 2015 confirmed: Business climate survey shows robust industry sector November 14th, 2014

Open Materials Development Will Be Key for HP's Success in 3D Printing: HP can make a big splash in 3D printing, but it needs to shore up technology claims and avoid the temptation of the razor/razor blade business model in order to flourish November 11th, 2014

Academic/Education

SUNY Poly NanoCollege Faculty Member Selected as American Physical Society Fellow: SUNY Poly Associate Professor of Nanoscience Dr. Vincent LaBella Recognized for Significant Technological Innovations that Enable Interactive Learning December 17th, 2014

Nanomedicine expert joins Rice faculty: Gang Bao combines genetic, nano and imaging techniques to fight disease December 17th, 2014

FEI and Oregon Health & Science University Install a Complete Correlative Microscopy Workflow in Newly Built Collaborative Science Facility December 16th, 2014

Student Nanotechnology Laboratories Network Set Up in Iran December 15th, 2014

Sensors

Promising new method for rapidly screening cancer drugs: UMass Amherst researchers invent fast, accurate new nanoparticle-based sensor system December 15th, 2014

Graphene Applied in Production of Recyclable Electrodes December 13th, 2014

Detecting gases wirelessly and cheaply: New sensor can transmit information on hazardous chemicals or food spoilage to a smartphone December 8th, 2014

Nanosensor to Detect Naproxen Drug Produced in Iran December 6th, 2014

Announcements

Aculon Hires New Business Development Director December 19th, 2014

How does enzymatic pretreatment affect the nanostructure and reaction space of lignocellulosic biomass? December 18th, 2014

Silicon Valley-Based Foresight Valuation Launches STR-IP™, a New Initiative for Startups to Discover the Value of Their Intellectual Property December 18th, 2014

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Environment

Nanoparticles Prove Effective in Removing Phosphor from Calcareous Soil December 10th, 2014

Detecting gases wirelessly and cheaply: New sensor can transmit information on hazardous chemicals or food spoilage to a smartphone December 8th, 2014

Nanocatalysts Can Reduce Pollution Caused by Diesel Engines December 4th, 2014

Green meets nano: Scientists at TU Darmstadt create multifunctional nanotubes using nontoxic materials December 3rd, 2014

Water

Unraveling the light of fireflies December 17th, 2014

Biomimetic dew harvesters: Understanding how a desert beetle harvests water from dew could improve drinking water collection in dew condensers December 8th, 2014

Iranian Scientists Refine Wastewater of Nuclear Power Plants Using Nanoparticles December 1st, 2014

Iranian Experts Clean Uranium-Contaminated Water by Nano-Particles November 23rd, 2014

Nanobiotechnology

Scientists trace nanoparticles from plants to caterpillars: Rice University study examines how nanoparticles behave in food chain December 16th, 2014

FEI and Oregon Health & Science University Install a Complete Correlative Microscopy Workflow in Newly Built Collaborative Science Facility December 16th, 2014

UCLA engineers first to detect and measure individual DNA molecules using smartphone microscope December 15th, 2014

Biomimetic dew harvesters: Understanding how a desert beetle harvests water from dew could improve drinking water collection in dew condensers December 8th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE