Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > UPC researchers develop high-efficiency photovoltaic cells

Abstract:
The Micro- and Nanotechnology Research Group of the Universitat Politècnica de Catalunya, UPC-Barcelona Tech, has produced silicon photovoltaic cells with a conversion efficiency of 20.5%, the highest level achieved in Spain using this material. This figure is comparable to results obtained by leading research groups in the field at the international level.

UPC researchers develop high-efficiency photovoltaic cells

Barcelona, Spain | Posted on February 7th, 2011

The cells developed by the Micro- and Nanotechnology Research Group of the UPC-Barcelona Tech researchers have surpassed the 15% barrier—the average efficiency of the most common photovoltaic cells. Specifically, a conversion efficiency (of incident light to electric power) of 20.5% has been achieved, which means the energy produced per unit of area can be increased by one third.

For example, thanks to the high efficiency of this new cell type, only 4.8 m² of photovoltaic panels would be needed to meet one family's annual energy needs (an average of about 4 kWh per day). This compares to an area of 6.5 m² for traditional cells.

The cells are made of crystalline silicon and work in a simple way, much as conventional cells do. The light captured by the cells generates charges that are drawn off at the panel contacts and transformed into an electric current. "The goal is to generate a lot of charges that don't get lost—that make it to the contacts," says Alcubilla, a member of the research group. Finally, after the light from the sun has been converted into electric current, it is fed into the power grid for domestic and industrial use.

The key to the success of the project was therefore to minimize losses, and by pursuing this approach the UPC-Barcelona Tech researchers have managed to produce the most efficient silicon cells in Spain. "We've done a lot of work on the conception and development of new materials and structures, and on the technology needed to optimize the entire process and achieve high levels of efficiency," says Alcubilla. The next step is to develop procedures that facilitate large-scale production.

The result achieved in this research (which has involved 38 trials since 2002) is comparable to those obtained in other research projects carried out in countries that are taking the lead in the field of photovoltaic energy. The maximum efficiency obtained for cells of this type is 24.7%, a record set by an Australian group at the University of New South Wales.

Photovoltaic energy around the world

According to the International Energy Agency, with over 4000 MW, Spain is one of the countries with the most photovoltaic capacity installed. The leader is Germany, with 7203 MW installed. According to the European Photovoltaic Industry Association, in 2009 total installed capacity worldwide was 22,787 MW, with the European Union (EU) accounting for 15,943 MW. In fact, in two years, from 2007 to 2009, the EU became the leader in the sector, tripling the number of photovoltaic installations in member countries. Japan was a distant second with 2633 MW.

According to data provided by Red Eléctrica Española, in 2010 solar energy met 2% of the total demand for electric power in Spain and represents 6.25% of the total covered by renewables, a category that includes hydroelectric energy, wind power, solar thermal, biomass, geothermal energy, marine energy, and other sources.

####

For more information, please click here

Copyright © Universitat Politècnica de Catalunya

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Scientists change properties of zeolites to improve hemodialysis July 29th, 2016

Novel state of matter: Observation of a quantum spin liquid July 29th, 2016

A new type of quantum bits July 29th, 2016

Lonely atoms, happily reunited July 29th, 2016

Possible Futures

Scientists change properties of zeolites to improve hemodialysis July 29th, 2016

Novel state of matter: Observation of a quantum spin liquid July 29th, 2016

A new type of quantum bits July 29th, 2016

Pixel-array quantum cascade detector paves the way for portable thermal imaging devices: Research team from TU-Wien Center for Micro- and Nanostructures have developed a new 'cooler' sensing instrument thereby increasing energy-efficiency and enhancing mobility for diagnostic tes July 28th, 2016

Academic/Education

Thomas Swan and NGI announce unique partnership July 28th, 2016

The NanoWizard® AFM from JPK is applied for interdisciplinary research at the University of South Australia for applications including smart wound healing and how plants can protect themselves from toxins July 26th, 2016

News from Quorum: The College of New Jersey use the Quorum Cryo-SEM preparation system in a project to study ice crystals in high altitude clouds July 19th, 2016

Leti and Korea Institute of Science and Technology to Explore Collaboration on Advanced Technologies for Digital Era July 14th, 2016

Announcements

Scientists change properties of zeolites to improve hemodialysis July 29th, 2016

Novel state of matter: Observation of a quantum spin liquid July 29th, 2016

A new type of quantum bits July 29th, 2016

Lonely atoms, happily reunited July 29th, 2016

Energy

New nontoxic process promises larger ultrathin sheets of 2-D nanomaterials July 27th, 2016

Designing climate-friendly concrete, from the nanoscale up: New understanding of concrete’s properties could increase lifetime of the building material, decrease emissions July 25th, 2016

An accelerated pipeline to open materials research: ORNL workflow system unites imaging, algorithms, and HPC to advance materials discovery and design July 24th, 2016

Researchers discover key mechanism for producing solar cells: Better understanding of perovskite solar cells could boost widespread use July 21st, 2016

Solar/Photovoltaic

New nontoxic process promises larger ultrathin sheets of 2-D nanomaterials July 27th, 2016

An accelerated pipeline to open materials research: ORNL workflow system unites imaging, algorithms, and HPC to advance materials discovery and design July 24th, 2016

Researchers discover key mechanism for producing solar cells: Better understanding of perovskite solar cells could boost widespread use July 21st, 2016

The future of perovskite solar cells has just got brighter -- come rain or shine: Korean researchers at POSTECH have succeeded in developing high-efficiency perovskite solar cells that retain excellent performance over two months in a very humid condition July 21st, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic