Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > UPC researchers develop high-efficiency photovoltaic cells

Abstract:
The Micro- and Nanotechnology Research Group of the Universitat Politècnica de Catalunya, UPC-Barcelona Tech, has produced silicon photovoltaic cells with a conversion efficiency of 20.5%, the highest level achieved in Spain using this material. This figure is comparable to results obtained by leading research groups in the field at the international level.

UPC researchers develop high-efficiency photovoltaic cells

Barcelona, Spain | Posted on February 7th, 2011

The cells developed by the Micro- and Nanotechnology Research Group of the UPC-Barcelona Tech researchers have surpassed the 15% barrier—the average efficiency of the most common photovoltaic cells. Specifically, a conversion efficiency (of incident light to electric power) of 20.5% has been achieved, which means the energy produced per unit of area can be increased by one third.

For example, thanks to the high efficiency of this new cell type, only 4.8 m² of photovoltaic panels would be needed to meet one family's annual energy needs (an average of about 4 kWh per day). This compares to an area of 6.5 m² for traditional cells.

The cells are made of crystalline silicon and work in a simple way, much as conventional cells do. The light captured by the cells generates charges that are drawn off at the panel contacts and transformed into an electric current. "The goal is to generate a lot of charges that don't get lost—that make it to the contacts," says Alcubilla, a member of the research group. Finally, after the light from the sun has been converted into electric current, it is fed into the power grid for domestic and industrial use.

The key to the success of the project was therefore to minimize losses, and by pursuing this approach the UPC-Barcelona Tech researchers have managed to produce the most efficient silicon cells in Spain. "We've done a lot of work on the conception and development of new materials and structures, and on the technology needed to optimize the entire process and achieve high levels of efficiency," says Alcubilla. The next step is to develop procedures that facilitate large-scale production.

The result achieved in this research (which has involved 38 trials since 2002) is comparable to those obtained in other research projects carried out in countries that are taking the lead in the field of photovoltaic energy. The maximum efficiency obtained for cells of this type is 24.7%, a record set by an Australian group at the University of New South Wales.

Photovoltaic energy around the world

According to the International Energy Agency, with over 4000 MW, Spain is one of the countries with the most photovoltaic capacity installed. The leader is Germany, with 7203 MW installed. According to the European Photovoltaic Industry Association, in 2009 total installed capacity worldwide was 22,787 MW, with the European Union (EU) accounting for 15,943 MW. In fact, in two years, from 2007 to 2009, the EU became the leader in the sector, tripling the number of photovoltaic installations in member countries. Japan was a distant second with 2633 MW.

According to data provided by Red Eléctrica Española, in 2010 solar energy met 2% of the total demand for electric power in Spain and represents 6.25% of the total covered by renewables, a category that includes hydroelectric energy, wind power, solar thermal, biomass, geothermal energy, marine energy, and other sources.

####

For more information, please click here

Copyright © Universitat Politècnica de Catalunya

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

Explaining how 2-D materials break at the atomic level January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Possible Futures

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

Explaining how 2-D materials break at the atomic level January 20th, 2017

Academic/Education

Oxford Nanoimaging report on how the Nanoimager, a desktop microscope delivering single molecule, super-resolution performance, is being applied at the MRC Centre for Molecular Bacteriology & Infection November 22nd, 2016

The University of Applied Sciences in Upper Austria uses Deben tensile stages as an integral part of their computed tomography research and testing facility October 18th, 2016

Enterprise In Space Partners with Sketchfab and 3D Hubs for NewSpace Education October 13th, 2016

New Agricultural Research Center Debuts at UCF October 12th, 2016

Announcements

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Energy

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Stability challenge in perovskite solar cell technology: New research reveals intrinsic instability issues of iodine-containing perovskite solar cells December 26th, 2016

Solar/Photovoltaic

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Stability challenge in perovskite solar cell technology: New research reveals intrinsic instability issues of iodine-containing perovskite solar cells December 26th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project