Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > 'Tall order' sunlight-to-hydrogen system works, neutron analysis confirms

Neutron scattering analysis performed at DOE's Oak Ridge National Laboratory reveals the lamellar structure of a hydrogen-producing, biohybrid composite material formed by the self-assembly of naturally occurring, light harvesting proteins with polymers.
Neutron scattering analysis performed at DOE's Oak Ridge National Laboratory reveals the lamellar structure of a hydrogen-producing, biohybrid composite material formed by the self-assembly of naturally occurring, light harvesting proteins with polymers.

Abstract:
Researchers at the Department of Energy's Oak Ridge National Laboratory have developed a biohybrid photoconversion system -- based on the interaction of photosynthetic plant proteins with synthetic polymers -- that can convert visible light into hydrogen fuel.

'Tall order' sunlight-to-hydrogen system works, neutron analysis confirms

Oak Ridge, TN | Posted on February 7th, 2011

Photosynthesis, the natural process carried out by plants, algae and some bacterial species, converts sunlight energy into chemical energy and sustains much of the life on earth. Researchers have long sought inspiration from photosynthesis to develop new materials to harness the sun's energy for electricity and fuel production.

In a step toward synthetic solar conversion systems, the ORNL researchers have demonstrated and confirmed with small-angle neutron scattering analysis that light harvesting complex II (LHC-II) proteins can self-assemble with polymers into a synthetic membrane structure and produce hydrogen.

The researchers envision energy-producing photoconversion systems similar to photovoltaic cells that generate hydrogen fuel, comparable to the way plants and other photosynthetic organisms convert light to energy.

"Making a, self-repairing synthetic photoconversion system is a pretty tall order. The ability to control structure and order in these materials for self-repair is of interest because, as the system degrades, it loses its effectiveness," ORNL researcher Hugh O'Neill, of the lab's Center for Structural Molecular Biology, said.

"This is the first example of a protein altering the phase behavior of a synthetic polymer that we have found in the literature. This finding could be exploited for the introduction of self-repair mechanisms in future solar conversion systems," he said.

Small angle neutron scattering analysis performed at ORNL's High Flux Isotope Reactor (HFIR) showed that the LHC-II, when introduced into a liquid environment that contained polymers, interacted with polymers to form lamellar sheets similar to those found in natural photosynthetic membranes.

The ability of LHC-II to force the assembly of structural polymers into an ordered, layered state -- instead of languishing in an ineffectual mush -- could make possible the development of biohybrid photoconversion systems. These systems would consist of high surface area, light-collecting panes that use the proteins combined with a catalyst such as platinum to convert the sunlight into hydrogen, which could be used for fuel.

The research builds on previous ORNL investigations into the energy-conversion capabilities of platinized photosystem I complexes -- and how synthetic systems based on plant biochemistry can become part of the solution to the global energy challenge.

"We're building on the photosynthesis research to explore the development of self-assembly in biohybrid systems. The neutron studies give us direct evidence that this is occurring," O'Neill said.

The researchers confirmed the proteins' structural behavior through analysis with HFIR's Bio-SANS, a small-angle neutron scattering instrument specifically designed for analysis of biomolecular materials.

"Cold source" neutrons, in which energy is removed by passing them through cryogenically chilled hydrogen, are ideal for studying the molecular structures of biological tissue and polymers.

The LHC-II protein for the experiment was derived from a simple source: spinach procured from a local produce section, then processed to separate the LHC-II proteins from other cellular components. Eventually, the protein could be synthetically produced and optimized to respond to light.

O'Neill said the primary role of the LHC-II protein is as a solar collector, absorbing sunlight and transferring it to the photosynthetic reaction centers, maximizing their output. "However, this study shows that LHC-II can also carry out electron transfer reactions, a role not known to occur in vivo," he said.

The research team, which came from various laboratory organizations including its Chemical Sciences Division, Neutron Scattering Sciences Division, the Center for Structural Molecular Biology and the Center for Nanophase Materials Sciences, consisted of O'Neill, William T. Heller, and Kunlun Hong, all of ORNL; Dimitry Smolensky of the University of Tennessee; and Mateus Cardoso, a former postdoctoral researcher at ORNL now of the Laboratio Nacional de Luz Sincrotron in Brazil.

"That's one of the nice things about working at a national laboratory. Expertise is available from a variety of organizations," O'Neill said.

The work, published in the journal Energy & Environmental Science, was supported with Laboratory-Directed Research and Development funding. HFIR is supported by the DOE Office of Science.

ORNL is managed by UT-Battelle for the Department of Energy's Office of Science.

####

For more information, please click here

Contacts:
Media Contact:
Bill Cabage
Communications and External Relations
865.574.4399

Copyright © Oak Ridge National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New method allows for greater variation in band gap tunability: The method can change a material's electronic band gap by up to 200 percent January 31st, 2015

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Everything You Need To Know About Nanopesticides January 30th, 2015

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Nanoscale Mirrored Cavities Amplify, Connect Quantum Memories: Advance could lead to quantum computing and the secure transfer of information over long-distance fiber optic networks January 28th, 2015

Detecting chemical weapons with a color-changing film January 28th, 2015

'Bulletproof' battery: Kevlar membrane for safer, thinner lithium rechargeables January 28th, 2015

Possible Futures

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

Nanotechnology in Energy Applications Market Research Report 2014-2018: Radiant Insights, Inc January 15th, 2015

'Mind the gap' between atomically thin materials December 23rd, 2014

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Academic/Education

Rice's Naomi Halas to direct Smalley Institute: Optics pioneer will lead Rice's multidisciplinary science institute January 15th, 2015

SUNY Board Appoints Dr. Alain Kaloyeros as Founding President of SUNY Polytechnic Institute January 13th, 2015

CNSE's Smart System Technology & Commercialization Center Successfully Recertifies as ISO 9001:2008 January 12th, 2015

SUNY Poly Now Accepting Applications to the Colleges of Nanoscale Science and Engineering for Fall 2015: Full Scholarships Available to Incoming CNSE Students January 7th, 2015

Self Assembly

Engineering self-assembling amyloid fibers January 26th, 2015

Revealed: How bacteria drill into our cells and kill them December 2nd, 2014

Live Images from the Nano-cosmos: Researchers watch layers of football molecules grow November 5th, 2014

Outsmarting Thermodynamics in Self-assembly of Nanostructures: Berkeley Lab reports method for symmetry-breaking in feedback-driven self-assembly of optical metamaterials November 4th, 2014

Announcements

New method allows for greater variation in band gap tunability: The method can change a material's electronic band gap by up to 200 percent January 31st, 2015

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Everything You Need To Know About Nanopesticides January 30th, 2015

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Solar/Photovoltaic

New method allows for greater variation in band gap tunability: The method can change a material's electronic band gap by up to 200 percent January 31st, 2015

Crystal light: New light-converting materials point to cheaper, more efficient solar power: University of Toronto engineers study first single crystal perovskites for new solar cell and LED applications January 30th, 2015

Los Alamos Develops New Technique for Growing High-Efficiency Perovskite Solar Cells: Researchers’ crystal-production insights resolve manufacturing difficulty January 29th, 2015

Visualizing interacting electrons in a molecule: Scientists at Aalto University and the University of Zurich have succeeded in directly imaging how electrons interact within a single molecule January 26th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE