Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > 'Tall order' sunlight-to-hydrogen system works, neutron analysis confirms

Neutron scattering analysis performed at DOE's Oak Ridge National Laboratory reveals the lamellar structure of a hydrogen-producing, biohybrid composite material formed by the self-assembly of naturally occurring, light harvesting proteins with polymers.
Neutron scattering analysis performed at DOE's Oak Ridge National Laboratory reveals the lamellar structure of a hydrogen-producing, biohybrid composite material formed by the self-assembly of naturally occurring, light harvesting proteins with polymers.

Abstract:
Researchers at the Department of Energy's Oak Ridge National Laboratory have developed a biohybrid photoconversion system -- based on the interaction of photosynthetic plant proteins with synthetic polymers -- that can convert visible light into hydrogen fuel.

'Tall order' sunlight-to-hydrogen system works, neutron analysis confirms

Oak Ridge, TN | Posted on February 7th, 2011

Photosynthesis, the natural process carried out by plants, algae and some bacterial species, converts sunlight energy into chemical energy and sustains much of the life on earth. Researchers have long sought inspiration from photosynthesis to develop new materials to harness the sun's energy for electricity and fuel production.

In a step toward synthetic solar conversion systems, the ORNL researchers have demonstrated and confirmed with small-angle neutron scattering analysis that light harvesting complex II (LHC-II) proteins can self-assemble with polymers into a synthetic membrane structure and produce hydrogen.

The researchers envision energy-producing photoconversion systems similar to photovoltaic cells that generate hydrogen fuel, comparable to the way plants and other photosynthetic organisms convert light to energy.

"Making a, self-repairing synthetic photoconversion system is a pretty tall order. The ability to control structure and order in these materials for self-repair is of interest because, as the system degrades, it loses its effectiveness," ORNL researcher Hugh O'Neill, of the lab's Center for Structural Molecular Biology, said.

"This is the first example of a protein altering the phase behavior of a synthetic polymer that we have found in the literature. This finding could be exploited for the introduction of self-repair mechanisms in future solar conversion systems," he said.

Small angle neutron scattering analysis performed at ORNL's High Flux Isotope Reactor (HFIR) showed that the LHC-II, when introduced into a liquid environment that contained polymers, interacted with polymers to form lamellar sheets similar to those found in natural photosynthetic membranes.

The ability of LHC-II to force the assembly of structural polymers into an ordered, layered state -- instead of languishing in an ineffectual mush -- could make possible the development of biohybrid photoconversion systems. These systems would consist of high surface area, light-collecting panes that use the proteins combined with a catalyst such as platinum to convert the sunlight into hydrogen, which could be used for fuel.

The research builds on previous ORNL investigations into the energy-conversion capabilities of platinized photosystem I complexes -- and how synthetic systems based on plant biochemistry can become part of the solution to the global energy challenge.

"We're building on the photosynthesis research to explore the development of self-assembly in biohybrid systems. The neutron studies give us direct evidence that this is occurring," O'Neill said.

The researchers confirmed the proteins' structural behavior through analysis with HFIR's Bio-SANS, a small-angle neutron scattering instrument specifically designed for analysis of biomolecular materials.

"Cold source" neutrons, in which energy is removed by passing them through cryogenically chilled hydrogen, are ideal for studying the molecular structures of biological tissue and polymers.

The LHC-II protein for the experiment was derived from a simple source: spinach procured from a local produce section, then processed to separate the LHC-II proteins from other cellular components. Eventually, the protein could be synthetically produced and optimized to respond to light.

O'Neill said the primary role of the LHC-II protein is as a solar collector, absorbing sunlight and transferring it to the photosynthetic reaction centers, maximizing their output. "However, this study shows that LHC-II can also carry out electron transfer reactions, a role not known to occur in vivo," he said.

The research team, which came from various laboratory organizations including its Chemical Sciences Division, Neutron Scattering Sciences Division, the Center for Structural Molecular Biology and the Center for Nanophase Materials Sciences, consisted of O'Neill, William T. Heller, and Kunlun Hong, all of ORNL; Dimitry Smolensky of the University of Tennessee; and Mateus Cardoso, a former postdoctoral researcher at ORNL now of the Laboratio Nacional de Luz Sincrotron in Brazil.

"That's one of the nice things about working at a national laboratory. Expertise is available from a variety of organizations," O'Neill said.

The work, published in the journal Energy & Environmental Science, was supported with Laboratory-Directed Research and Development funding. HFIR is supported by the DOE Office of Science.

ORNL is managed by UT-Battelle for the Department of Energy's Office of Science.

####

For more information, please click here

Contacts:
Media Contact:
Bill Cabage
Communications and External Relations
865.574.4399

Copyright © Oak Ridge National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

Arrowhead Receives Regulatory Clearance to Begin Phase 1/2 Study of ARO-HBV for Treatment of Hepatitis B February 15th, 2018

Arrowhead Pharmaceuticals Receives Orphan Drug Designation for ARO-AAT February 15th, 2018

European & Korean Project To Demo World’s First 5G Platform During Winter Games February 15th, 2018

Govt.-Legislation/Regulation/Funding/Policy

Arrowhead Receives Regulatory Clearance to Begin Phase 1/2 Study of ARO-HBV for Treatment of Hepatitis B February 15th, 2018

Arrowhead Pharmaceuticals Receives Orphan Drug Designation for ARO-AAT February 15th, 2018

Rutgers-Led Innovation Could Spur Faster, Cheaper, Nano-Based Manufacturing: Scalable and cost-effective manufacturing of thin film devices February 14th, 2018

Understanding brain functions using upconversion nanoparticles: Researchers can now send light deep into the brain to study neural activities February 14th, 2018

Possible Futures

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers February 15th, 2018

Rutgers-Led Innovation Could Spur Faster, Cheaper, Nano-Based Manufacturing: Scalable and cost-effective manufacturing of thin film devices February 14th, 2018

Understanding brain functions using upconversion nanoparticles: Researchers can now send light deep into the brain to study neural activities February 14th, 2018

Academic/Education

Luleċ University of Technology is using the Deben CT5000TEC stage to perform x-ray microtomography experiments with the ZEISS Xradia 510 Versa to understand deformation and strain inside inhomogeneous materials November 7th, 2017

Park Systems Announces the Grand Opening of the Park NanoScience Center at SUNY Polytechnic Institute November 3rd, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Self Assembly

Liquid crystal molecules form nano rings: Quantized self-assembly enables design of materials with novel properties February 7th, 2018

Particle size matters for porous building blocks: Rice University scientists find porous nanoparticles get tougher under pressure, but not when assembled December 19th, 2017

Physicists gain new insights into nanosystems with spherical confinement: Enormous potential for the targeted delivery of pharmaceutical agents and the creation of tailored nanoparticles July 27th, 2017

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

Announcements

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

Arrowhead Receives Regulatory Clearance to Begin Phase 1/2 Study of ARO-HBV for Treatment of Hepatitis B February 15th, 2018

Arrowhead Pharmaceuticals Receives Orphan Drug Designation for ARO-AAT February 15th, 2018

European & Korean Project To Demo World’s First 5G Platform During Winter Games February 15th, 2018

Solar/Photovoltaic

A simple new approach to plastic solar cells: Osaka University researchers intelligently design new highly efficient organic solar cells based on amorphous electronic materials with potential for easy printing January 28th, 2018

Tweaking quantum dots powers-up double-pane solar windows: Engineered quantum dots could bring down the cost of solar electricity January 2nd, 2018

Record high photoconductivity for new metal-organic framework material December 15th, 2017

Inorganic-organic halide perovskites for new photovoltaic technology November 6th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project