Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Stanford scientists see the solar future, and it's all about 'nanodomes' and 'plasmonics'

Acting like a waffle iron, silicon nanodomes, each about 300 nanometers in diameter and 200 nanometers tall, imprint a honeycomb pattern of nanoscale dimples into a layer of metal within the solar cell. Courtesy of Michael McGehee
Acting like a waffle iron, silicon nanodomes, each about 300 nanometers in diameter and 200 nanometers tall, imprint a honeycomb pattern of nanoscale dimples into a layer of metal within the solar cell. Courtesy of Michael McGehee

Abstract:
Stanford engineers dance with plasmonics to yield new direction for thin, inexpensive solar cells.

BY ANDREW MYERS

Stanford scientists see the solar future, and it's all about 'nanodomes' and 'plasmonics'

Stanford, CA | Posted on February 3rd, 2011

Researchers in solar energy speak of a day when millions of otherwise fallow square meters of sun-drenched roofs, windows, deserts and even clothing will be integrated with inexpensive solar cells that are many times thinner and lighter than the bulky rooftop panels familiar today.

So, when your iPod is on the nod, you might plug it into your shirt to recharge. Lost in the Serengeti with a sapped cell phone? No problem; rolled in your backpack is a lightweight solar pad. Sailing the seven seas and your GPS needs some juice? Hoist a solar sail and be one with the gods of geosynchronous orbit.

It is not hard to envision a time when such technologies will be ubiquitous in our increasingly energy-hungry lives. That day may come a bit sooner thanks to a multidisciplinary team of Stanford engineers led by Mike McGehee, Yi Cui and Mark Brongersma, and joined by Michael Graetzel at the École Polytechnique Fédérale de Lausanne (EPFL).

Waves of energy

In an article published in Advance Energy Materials, the Stanford/EPFL team announced a new type of thin solar cell that could offer a new direction for the field. They succeeded in harnessing plasmonics - an emerging branch of science and technology - to more effectively trap light within thin solar cells to improve performance and push them one step closer to daily reality.

"Plasmonics makes it much easier to improve the efficiency of solar cells," said McGehee, an associate professor of materials science and engineering at Stanford.

McGehee is the director of CAMP - the Center for Advanced Molecular Photovoltaics - a multidisciplinary, multi-university team tackling the challenges of thin-film solar cells.

"Using plasmonics we can absorb the light in thinner films than ever before," McGehee said. "The thinner the film, the closer the charged particles are to the electrodes. In essence, more electrons can make it to the electrode to become electricity."

Plasmonics is the study of the interaction of light and metal. Under precise circumstances, these interactions create a flow of high-frequency, dense electrical waves rather than electron particles. The electronic pulse travels in extremely fast waves of greater and lesser density, like sound through the air.

A perfect solar waffle

The lightbulb moment for the team came when they imprinted a honeycomb pattern of nanoscale dimples into a layer of metal within the solar cell. Think of it as a nanoscale waffle, only the bumps on the waffle iron are domes rather than cubes - nanodomes to be exact, each only a few billionths of a meter across.

To fashion their waffle, McGehee and team members spread a thin layer of batter on a transparent, electrically conductive base. This batter is mostly titania, a semi-porous metal that is also transparent to light. Next, they use their nano waffle iron to imprint the dimples into the batter. Next, they layer on some butter - a light-sensitive dye - which oozes into the dimples and pores of the waffle. Lastly, the engineers add some syrup - a layer of silver, which hardens almost immediately.

When all those nanodimples fill up, the result is a pattern of nanodomes on the light-ward side of the silver.

This bumpy layer of silver has two primary benefits. First, it acts as a mirror, scattering unabsorbed light back into the dye for another shot at collection. Second, the light interacts with the silver nanodomes to produce plasmonic effects. Those domes of silver are crucial. Reflectors without them will not produce the desired effect. And any old nanodomes won't do either; they must be just the right diameter and height, and spaced just so, to fully optimize the plasmonics.

If you imagine your nanoself observing one of these solar cells in slow motion, you would see photons enter and pass through the transparent base and the titania (the waffle), at which point some photons would be absorbed by the light-sensitive dye (the butter), creating an electric current. Most of the remaining photons would hit the silver back reflector (the hardened syrup) and bounce back into the solar cell. A certain portion of the photons that reach the silver, however, will strike the nanodomes and cause plasmonic waves to course outward. And there you have it - the first-ever plasmonic dye-sensitized solar cell.

Trapping the light fantastic

It is easy to see why researchers are focused on thin-film solar technology. In recent years, much hope has been directed toward these lightweight, flexible cells that use photosensitive dyes to generate electricity. These cells have many advantages: They are less energy intensive and less costly to produce, flowing like newsprint off huge roll presses. They are thinner even than other "thin" solar cells. They are also printable on flexible bases that can be rolled up and taken virtually anywhere. Many use non-toxic, abundantly available materials, as well - a huge plus in the push for sustainability.

Dye-sensitized solar cells are not without challenges, however. First off, the very best convert only a small percentage of light into electricity - about 8 percent. The bulkier commercial technologies available today have reached 25 percent efficiency, and certain advanced applications have topped 40 percent. And then there is durability. The latest thin solar cell will last about seven years under continuous exposure to the elements. Not bad until you consider that 20 to 30 years is the commercial standard.

Both efficiency and reliability will have to improve. Nonetheless, engineers like McGehee believe that if they can convert just 15 percent of the light into electricity - a figure that is not out of reach - and tease the lifespan to a decade, we might soon find ourselves in the age of personal solar cells. An advance like plasmonics just might provide the spark necessary to take the field down a new and exciting path.

A matter of economics

Cheaper and cleaner will be the keys. Coal-based power is plentiful and cheap, but also comes at a steep environmental cost in gouged landscapes and polluted skies. At today's commercial rates, however, even the best solar alternatives cost five times more per kilowatt-hour than coal. It is clear that economics, and not technology, is what stands between us and our solar future.

But McGehee and others are confident they can make thin solar cells more attractive.

Andrew Myers is the associate communications director for the School of Engineering.

####

For more information, please click here

Contacts:
Media Contact
Andrew Myers
Stanford School of Engineering
(650) 736-2245

Copyright © Stanford University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A 'movie' of ultrafast rotating molecules at a hundred billion per second: A quantum wave-like nature was successfully observed in rotating nitrogen molecules July 4th, 2015

New Biosensor Produced in Iran to Detect Effective Drugs in Cancer Treatment July 4th, 2015

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

Thin films

New micro-supercapacitor structure inspired by the intricate design of leaves: A team of scientists in Korea has devised a new method for making a graphene film for supercapacitors July 2nd, 2015

Stanford researchers stretch a thin crystal to get better solar cells June 25th, 2015

World’s 1st Full-Color, Flexible, Skin-Like Display Developed at UCF June 24th, 2015

Picosun ALD breaks through in medical technology June 23rd, 2015

Possible Futures

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

Harris & Harris Group Portfolio Company D-Wave Systems Announces 1,000 Qubit Processor and is Discussed in the Economist June 23rd, 2015

Global Nanoclays Market Analysis, Size, Growth, Trends And Segment Forecasts, 2015 To 2022: Grand View Research, Inc June 15th, 2015

Healthcare Nanotechnology (Nanomedicine) Market Size To 2020 June 5th, 2015

Academic/Education

Oxford Instruments’ TritonXL Cryofree dilution refrigerator selected for the Oxford NQIT Quantum Technology Hub project June 30th, 2015

Rice University boots up powerful microscopes: New electron microscopes will capture images at subnanometer resolution June 29th, 2015

Six top Catalan research centres constitute ‘The Barcelona Institute of Science and Technology’ to pursue a joint scientific endeavour June 27th, 2015

Lancaster University revolutionary quantum technology research receives funding boost June 22nd, 2015

Announcements

A 'movie' of ultrafast rotating molecules at a hundred billion per second: A quantum wave-like nature was successfully observed in rotating nitrogen molecules July 4th, 2015

New Biosensor Produced in Iran to Detect Effective Drugs in Cancer Treatment July 4th, 2015

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

Energy

New technology using silver may hold key to electronics advances July 2nd, 2015

Visible Light-Sensitive Photocatalysts Used for Purification of Contaminated Water in Iran June 30th, 2015

June 29th, 2015

Making new materials with micro-explosions: ANU media release: Scientists have made exotic new materials by creating laser-induced micro-explosions in silicon, the common computer chip material June 29th, 2015

Solar/Photovoltaic

Making new materials with micro-explosions: ANU media release: Scientists have made exotic new materials by creating laser-induced micro-explosions in silicon, the common computer chip material June 29th, 2015

Spain nanotechnology featured at NANO KOREA 2015 June 26th, 2015

Stanford researchers stretch a thin crystal to get better solar cells June 25th, 2015

Toward tiny, solar-powered sensors: New ultralow-power circuit improves efficiency of energy harvesting to more than 80 percent June 23rd, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project