Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Early tests find nanoshell therapy effective against brain cancer

Gold Nanoshell.  Credit Rice University.
Gold Nanoshell. Credit Rice University.

Abstract:
Rice bioengineers, Baylor College of Medicine and Texas Children's physician-scientists zap tumors with light-activated nanoparticles

Early tests find nanoshell therapy effective against brain cancer

Houston, TX | Posted on February 1st, 2011

Rice University bioengineers and physician-scientists at Baylor College of Medicine and Texas Children's Hospital have successfully destroyed tumors of human brain cancer cells in the first animal tests of a minimally invasive treatment that zaps glioma tumors with heat. The tests involved nanoshells, light-activated nanoparticles that are designed to destroy tumors with heat and avoid the unwanted side effects of drug and radiation therapies.

The results of the new study are available online in the Journal of Neuro-Oncology. The researchers reported that more than half of the animals that received the nanoshell treatment for glioma tumors had no signs of cancer more than three months after treatment.

"This first round of in vivo animal tests suggests that photothermal therapy with nanoshells may one day be a viable option for glioma patients," said study co-author Jennifer West, the Isabel C. Cameron Professor of Bioengineering at Rice and chair of Rice's Department of Bioengineering. West cautioned that follow-up work in the laboratory is needed before any human testing of the therapy can begin. She said human clinical trials of nanoshell phototherapy for glioma are likely at least a year away.

Glioma is among the most aggressive and difficult-to-treat of all brain cancers. Fewer than five percent of glioma patients survive beyond five years. The disease is particularly difficult to treat because glioma tumors are often highly invasive and inoperable.

Study co-authors include pediatric oncologist Susan Blaney, deputy director of Texas Children's Cancer Center and Baylor College of Medicine professor and vice chair for research in the department of pediatrics, and Rebekah Drezek, professor in bioengineering at Rice. West, Blaney, Drezek and colleagues tested mice with abdominal tumors of human glioma cells. The researchers injected the mice with nanoshells and waited 24 hours for the nanoparticles to accumulate in the tumors. A laser of near-infrared light -- which is harmless to healthy tissue -- was shined at the tumor for three minutes. The nanoshells converted the laser light into tumor-killing heat. All seven animals that received the nanoshell treatment responded, but cancer returned in three. The other four remained cancer-free 90 days after treatment.

"The results of this study are encouraging, and we are cautiously optimistic that this process may bring us closer to finding a cure for glioma," said Blaney, also associate director for clinical research at Baylor College of Medicine's Dan L. Duncan Cancer Center and co-director of The Institute for Clinical and Translational Research. "This is very exciting, especially given the poor prognosis of the disease and the importance of finding brain tumor treatment alternatives that have minimal side effects."

Gold nanoshells, which were invented by Rice researcher Naomi Halas in the mid-1990s, are smaller than red blood cells. Nanoshells are like tiny malted milk balls that are coated with gold rather than chocolate. Their core is nonconducting, and by varying the size of the core and thickness of the shell, researchers can tune them to respond to different wavelengths of light.

Houston-based biomedical firm Nanospectra Biosciences, which holds the license for medical use of Rice's nanoshell technology, began the first human clinical trial of nanoshell phototherapy in 2008.

West, a co-founder and director of Nanospectra Biosciences, said the new glioma study is part of a larger ongoing effort within the Texas Medical Center to adapt nanoshell phototherapy for use against a variety of cancers. Researchers at Rice, Texas Children's Hospital, M.D. Anderson Cancer Center, Baylor College of Medicine and other institutions are working to develop nanoshell-based treatments for prostate cancer and pancreatic cancer.

The glioma study was funded by the National Science Foundation, the National Institutes of Health and Hope Street Kids.

The study is available at: www.springerlink.com/content/j3n862x12l246708/

####

About Rice University
Located in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. A Tier One research university known for its "unconventional wisdom," Rice has schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and offers its 3,485 undergraduates and 2,275 graduate students a wide range of majors. Rice has the sixth-largest endowment per student among American private research universities and is rated No. 4 for “best value” among private universities by Kiplinger’s Personal Finance. Its undergraduate student-to-faculty ratio is less than 6-to-1. With a residential college system that builds close-knit and diverse communities and collaborative culture, Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review.

For more information, please click here

Contacts:
David Ruth
713-348-6327


Jade Boyd
713-348-6778

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

UT Dallas engineers twist nanofibers to create structures tougher than bulletproof vests March 27th, 2015

Novel nanoparticle therapy promotes wound healing March 27th, 2015

Designer's toolkit for dynamic DNA nanomachines: Arm-waving nanorobot signals new flexibility in DNA origami March 27th, 2015

Using magnetic fields to understand high-temperature superconductivity: Los Alamos explores experimental path to potential 'next theory of superconductivity' March 27th, 2015

Govt.-Legislation/Regulation/Funding/Policy

UT Dallas engineers twist nanofibers to create structures tougher than bulletproof vests March 27th, 2015

Novel nanoparticle therapy promotes wound healing March 27th, 2015

Designer's toolkit for dynamic DNA nanomachines: Arm-waving nanorobot signals new flexibility in DNA origami March 27th, 2015

Using magnetic fields to understand high-temperature superconductivity: Los Alamos explores experimental path to potential 'next theory of superconductivity' March 27th, 2015

Possible Futures

Nanotechnology in Medical Devices Market is expected to reach $8.5 Billion by 2019 March 25th, 2015

Nanotechnology Enabled Drug Delivery to Influence Future Diagnosis and Treatments of Diseases March 21st, 2015

Nanocomposites Market Growth, Industry Outlook To 2020 by Grand View Research, Inc. March 21st, 2015

Nanotechnology Drug Delivery Market in the US 2012-2016 : Latest Report Available by Radiant Insights, Inc March 16th, 2015

Academic/Education

LAMDAMAP 2015 hosted by the University March 26th, 2015

SUNY Poly & M+W Make Major Announcement: Major Expansion To Include M+W Owned Gehrlicher Solar America Corporation That Will Create up to 400 Jobs to Develop Solar Power Plants at SUNY Poly Sites Across New York State March 26th, 2015

SUNY POLY CNSE to Host First Ever Northeast Semi Supply Conference (NESCO) Conference Will Connect New and Emerging Innovators in the Northeastern US and Canada with Industry Leaders and Strategic Investors to Discuss Future Growth Opportunities in NYS March 25th, 2015

FEI Joins University of Ulm and CEOS on SALVE Project Research Collaboration: The Sub-Ångström Low Voltage Electron (SALVE) microscope should improve contrast and reduce damage on bio-molecules and two-dimensional nanomaterials, such as graphene March 18th, 2015

Nanomedicine

Novel nanoparticle therapy promotes wound healing March 27th, 2015

Graphene reduces wear of alumina ceramic March 26th, 2015

Application of Graphene Oxide in Body Implants in Iran March 26th, 2015

Nanotechnology in Medical Devices Market is expected to reach $8.5 Billion by 2019 March 25th, 2015

Announcements

UT Dallas engineers twist nanofibers to create structures tougher than bulletproof vests March 27th, 2015

Novel nanoparticle therapy promotes wound healing March 27th, 2015

Designer's toolkit for dynamic DNA nanomachines: Arm-waving nanorobot signals new flexibility in DNA origami March 27th, 2015

Using magnetic fields to understand high-temperature superconductivity: Los Alamos explores experimental path to potential 'next theory of superconductivity' March 27th, 2015

Nanobiotechnology

Designer's toolkit for dynamic DNA nanomachines: Arm-waving nanorobot signals new flexibility in DNA origami March 27th, 2015

Dolomite’s microfluidics technology ideal for B cell encapsulation March 24th, 2015

Tiny bio-robot is a germ suited-up with graphene quantum dots March 24th, 2015

TGAC's take on the first portable DNA sequencing 'laboratory': First remote laboratory allows researchers to conduct real-time anaylsis March 19th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE