Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Early tests find nanoshell therapy effective against brain cancer

Gold Nanoshell.  Credit Rice University.
Gold Nanoshell. Credit Rice University.

Abstract:
Rice bioengineers, Baylor College of Medicine and Texas Children's physician-scientists zap tumors with light-activated nanoparticles

Early tests find nanoshell therapy effective against brain cancer

Houston, TX | Posted on February 1st, 2011

Rice University bioengineers and physician-scientists at Baylor College of Medicine and Texas Children's Hospital have successfully destroyed tumors of human brain cancer cells in the first animal tests of a minimally invasive treatment that zaps glioma tumors with heat. The tests involved nanoshells, light-activated nanoparticles that are designed to destroy tumors with heat and avoid the unwanted side effects of drug and radiation therapies.

The results of the new study are available online in the Journal of Neuro-Oncology. The researchers reported that more than half of the animals that received the nanoshell treatment for glioma tumors had no signs of cancer more than three months after treatment.

"This first round of in vivo animal tests suggests that photothermal therapy with nanoshells may one day be a viable option for glioma patients," said study co-author Jennifer West, the Isabel C. Cameron Professor of Bioengineering at Rice and chair of Rice's Department of Bioengineering. West cautioned that follow-up work in the laboratory is needed before any human testing of the therapy can begin. She said human clinical trials of nanoshell phototherapy for glioma are likely at least a year away.

Glioma is among the most aggressive and difficult-to-treat of all brain cancers. Fewer than five percent of glioma patients survive beyond five years. The disease is particularly difficult to treat because glioma tumors are often highly invasive and inoperable.

Study co-authors include pediatric oncologist Susan Blaney, deputy director of Texas Children's Cancer Center and Baylor College of Medicine professor and vice chair for research in the department of pediatrics, and Rebekah Drezek, professor in bioengineering at Rice. West, Blaney, Drezek and colleagues tested mice with abdominal tumors of human glioma cells. The researchers injected the mice with nanoshells and waited 24 hours for the nanoparticles to accumulate in the tumors. A laser of near-infrared light -- which is harmless to healthy tissue -- was shined at the tumor for three minutes. The nanoshells converted the laser light into tumor-killing heat. All seven animals that received the nanoshell treatment responded, but cancer returned in three. The other four remained cancer-free 90 days after treatment.

"The results of this study are encouraging, and we are cautiously optimistic that this process may bring us closer to finding a cure for glioma," said Blaney, also associate director for clinical research at Baylor College of Medicine's Dan L. Duncan Cancer Center and co-director of The Institute for Clinical and Translational Research. "This is very exciting, especially given the poor prognosis of the disease and the importance of finding brain tumor treatment alternatives that have minimal side effects."

Gold nanoshells, which were invented by Rice researcher Naomi Halas in the mid-1990s, are smaller than red blood cells. Nanoshells are like tiny malted milk balls that are coated with gold rather than chocolate. Their core is nonconducting, and by varying the size of the core and thickness of the shell, researchers can tune them to respond to different wavelengths of light.

Houston-based biomedical firm Nanospectra Biosciences, which holds the license for medical use of Rice's nanoshell technology, began the first human clinical trial of nanoshell phototherapy in 2008.

West, a co-founder and director of Nanospectra Biosciences, said the new glioma study is part of a larger ongoing effort within the Texas Medical Center to adapt nanoshell phototherapy for use against a variety of cancers. Researchers at Rice, Texas Children's Hospital, M.D. Anderson Cancer Center, Baylor College of Medicine and other institutions are working to develop nanoshell-based treatments for prostate cancer and pancreatic cancer.

The glioma study was funded by the National Science Foundation, the National Institutes of Health and Hope Street Kids.

The study is available at: www.springerlink.com/content/j3n862x12l246708/

####

About Rice University
Located in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. A Tier One research university known for its "unconventional wisdom," Rice has schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and offers its 3,485 undergraduates and 2,275 graduate students a wide range of majors. Rice has the sixth-largest endowment per student among American private research universities and is rated No. 4 for “best value” among private universities by Kiplinger’s Personal Finance. Its undergraduate student-to-faculty ratio is less than 6-to-1. With a residential college system that builds close-knit and diverse communities and collaborative culture, Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review.

For more information, please click here

Contacts:
David Ruth
713-348-6327


Jade Boyd
713-348-6778

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Nanoparticle exposure can awaken dormant viruses in the lungs January 17th, 2017

Nanoscale view of energy storage January 16th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Nanoscale view of energy storage January 16th, 2017

Chemistry on the edge: Experiments at Berkeley Lab confirm that structural defects at the periphery are key in catalyst function January 13th, 2017

Recreating conditions inside stars with compact lasers: Scientists offer a new path to creating the extreme conditions found in stars, using ultra-short laser pulses irradiating nanowires January 12th, 2017

Deciphering the beetle exoskeleton with nanomechanics: Understanding exoskeletons could lead to new, improved artificial materials January 12th, 2017

Possible Futures

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Nanoscale view of energy storage January 16th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Academic/Education

Oxford Nanoimaging report on how the Nanoimager, a desktop microscope delivering single molecule, super-resolution performance, is being applied at the MRC Centre for Molecular Bacteriology & Infection November 22nd, 2016

The University of Applied Sciences in Upper Austria uses Deben tensile stages as an integral part of their computed tomography research and testing facility October 18th, 2016

Enterprise In Space Partners with Sketchfab and 3D Hubs for NewSpace Education October 13th, 2016

New Agricultural Research Center Debuts at UCF October 12th, 2016

Nanomedicine

New active filaments mimic biology to transport nano-cargo: A new design for a fully biocompatible motility engine transports colloidal particles faster than diffusion with active filaments January 11th, 2017

Keystone Nano Announces FDA Approval Of Investigational New Drug Application For Ceramide NanoLiposome For The Improved Treatment Of Cancer January 10th, 2017

Captured on video: DNA nanotubes build a bridge between 2 molecular posts: Research may lead to new lines of direct communication with cells January 9th, 2017

Arrowhead Provides Response to New Minority Shareholder Announcement January 7th, 2017

Announcements

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Nanoparticle exposure can awaken dormant viruses in the lungs January 17th, 2017

Nanoscale view of energy storage January 16th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

Nanobiotechnology

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

New active filaments mimic biology to transport nano-cargo: A new design for a fully biocompatible motility engine transports colloidal particles faster than diffusion with active filaments January 11th, 2017

Keystone Nano Announces FDA Approval Of Investigational New Drug Application For Ceramide NanoLiposome For The Improved Treatment Of Cancer January 10th, 2017

Captured on video: DNA nanotubes build a bridge between 2 molecular posts: Research may lead to new lines of direct communication with cells January 9th, 2017

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project