Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Novel Cancer-Targeting Investigational Nanoparticle Receives FDA IND Approval for First-in-Human Trial

C dots fluoresce brightly enough to be seen through the skin of a mouse (faintly visible in this photo). Dots coated with polyethylene glycol have all reached the bladder in 45 minutes, demonstrating that C dots will be harmlessly excreted after they do their job. Credit Memorial Sloan Kettering Cancer Center
C dots fluoresce brightly enough to be seen through the skin of a mouse (faintly visible in this photo). Dots coated with polyethylene glycol have all reached the bladder in 45 minutes, demonstrating that C dots will be harmlessly excreted after they do their job. Credit Memorial Sloan Kettering Cancer Center

Abstract:
Researchers at Memorial Sloan-Kettering Cancer Center's Nanotechnology Center, along with collaborators at Cornell University and Hybrid Silica Technologies, have received approval for their first Investigational New Drug Application (IND) from the US Food and Drug Administration (FDA) for an ultrasmall silica inorganic nanoparticle platform for targeted molecular imaging of cancer, which may be useful for cancer treatment in the future.

Novel Cancer-Targeting Investigational Nanoparticle Receives FDA IND Approval for First-in-Human Trial

New York, NY | Posted on January 31st, 2011

Center researchers are about to launch their first-in-human clinical trial in melanoma patients using this first-of-its-kind inorganic nanoparticle to be approved as a drug. "This is a very exciting and important first step for this new particle technology that we hope will ultimately lead to significant improvements in patient outcomes and prognoses for a number of different cancers," said Michelle Bradbury, MD, PhD, a clinician-scientist on Memorial Sloan-Kettering's Neuroradiology Service and an assistant professor of radiology at Weill Cornell Medical College, who is the lead investigator of the study, along with Snehal Patel, MD, a surgeon on Memorial Sloan-Kettering's Head and Neck Service, who is a co-principal investigator.

Cornell dots, or C dots, were initially developed as optical probes at Cornell University, Ithaca, by Ulrich Wiesner, PhD, a professor of materials science and engineering who, along with Hybrid Silica Technologies, Inc., the supplier of C dots, has spent the past eight years precisely engineering these particles. C dots were subsequently modified at Memorial Sloan-Kettering for use in PET imaging. C dots are tiny silica spheres that contain dye that glows three times more brightly than simple free dyes when excited by light of a specific wavelength. C dots can "light up" cancer cells, and act as tumor tracers for tracking the movement of cells and assisting in the optical diagnosis of tumors near the skin surface. The attachment of a radioactive label produces a new generation of multimodal (PET-optical) particle probes that additionally enable deeper detection, imaging, and monitoring of drug delivery using three-dimensional PET techniques.

C dots can be tailored to any particle size. Previous imaging experiments in mice conducted by the Memorial Sloan-Kettering team showed that particles of a very small size (in the 5 to 7 nanometer range) could be retained in the bloodstream and efficiently cleared through the kidneys after applying a neutral surface coat. More recently, the research team molecularly customized C dots to create a new particle platform, or probe, that can target surface receptors or other molecules expressed on tumor surfaces and that can be cleared through the kidneys. Using PET scans, C dots can be imaged to evaluate various biological properties of the tumors, including tumor accumulation, spread of metastatic disease, and treatment response to therapy.

The information gained from imaging tumors targeted with this multimodal platform may ultimately assist physicians in determining the extent of a tumor's spread, mapping lymph node disease, defining tumor borders for surgery, and improving real-time visualization of small vascular beds, anatomic channels, and neural structures during surgery.

The purpose of this trial is to evaluate the distribution, tissue, uptake, and safety of the particles in humans by PET imaging. This study will provide data that will serve as a baseline to guide the design of future surgical and oncologic applications in the clinic. "The use of PET imaging is an ideal imaging technology for sensitively monitoring very small doses of this new particle probe in first-in-human trials," added Steven Larson, MD, Chief of Memorial Sloan-Kettering's Nuclear Medicine Service.

Memorial Sloan-Kettering nanochemist Oula Penate Medina, PhD, notes that "this is an important trial in that it will help to answer a number of key questions regarding future potential applications of this multimodal system. Once the door has been opened, new and emerging fields, such as targeted drug delivery, can be investigated. We expect that these particles can be adapted for multiple clinical uses, including the early diagnosis and treatment of various cancers, as well as for sensing changes in the microenvironment."

"This clinical trial is the culmination of a longstanding collaborative effort with our colleagues at Cornell and Hybrid Silica Technologies, as well as a testament to our own institutional colleagues here at the Center," Dr. Bradbury said. "With the support of many, in particular the Office of Clinical Research, we've pushed to translate the C dots from a laboratory idea to our first FDA IND-approved inorganic nanomedicine drug product to be tested in the clinic," Dr. Bradbury said.

The work was funded in part by the Clinical and Translational Science Center, Weill Cornell Medical College, the Cornell Nanobiology Center, and the NIH Small-Animal Imaging Research Program (SAIRP). In addition to Drs. Bradbury, Penante-Medina, Larson, Patel, and Wiesner, the following Memorial Sloan-Kettering investigators contributed to and/or supported this work: Pat Zanzonico, PhD; Heiko Schöder, MD; Elisa De Stanchina, PhD; Hedvig Hricak, MD, Chair of the Department of Radiology; as well as Hooisweng Ow of Hybrid Silica Technologies, Inc.; Memorial Sloan-Kettering's Office of Clinical Research; and the Cyclotron Core.

####

About Memorial Sloan-Kettering Cancer Center
Memorial Sloan-Kettering Cancer Center is the world’s oldest and largest private institution devoted to prevention, patient care, research, and education in cancer. Our scientists and clinicians generate innovative approaches to better understand, diagnose, and treat cancer. These specialists are leaders in biomedical research and in translating the latest research to advance the standard of cancer care worldwide.

For more information, please click here

Contacts:
Jeanne D'Agostino

212-639-3573

Copyright © Memorial Sloan-Kettering Cancer Center

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

UT Dallas engineers twist nanofibers to create structures tougher than bulletproof vests March 27th, 2015

Novel nanoparticle therapy promotes wound healing March 27th, 2015

Designer's toolkit for dynamic DNA nanomachines: Arm-waving nanorobot signals new flexibility in DNA origami March 27th, 2015

Using magnetic fields to understand high-temperature superconductivity: Los Alamos explores experimental path to potential 'next theory of superconductivity' March 27th, 2015

Govt.-Legislation/Regulation/Funding/Policy

UT Dallas engineers twist nanofibers to create structures tougher than bulletproof vests March 27th, 2015

Novel nanoparticle therapy promotes wound healing March 27th, 2015

Designer's toolkit for dynamic DNA nanomachines: Arm-waving nanorobot signals new flexibility in DNA origami March 27th, 2015

Using magnetic fields to understand high-temperature superconductivity: Los Alamos explores experimental path to potential 'next theory of superconductivity' March 27th, 2015

Possible Futures

Nanotechnology in Medical Devices Market is expected to reach $8.5 Billion by 2019 March 25th, 2015

Nanotechnology Enabled Drug Delivery to Influence Future Diagnosis and Treatments of Diseases March 21st, 2015

Nanocomposites Market Growth, Industry Outlook To 2020 by Grand View Research, Inc. March 21st, 2015

Nanotechnology Drug Delivery Market in the US 2012-2016 : Latest Report Available by Radiant Insights, Inc March 16th, 2015

Academic/Education

LAMDAMAP 2015 hosted by the University March 26th, 2015

SUNY Poly & M+W Make Major Announcement: Major Expansion To Include M+W Owned Gehrlicher Solar America Corporation That Will Create up to 400 Jobs to Develop Solar Power Plants at SUNY Poly Sites Across New York State March 26th, 2015

SUNY POLY CNSE to Host First Ever Northeast Semi Supply Conference (NESCO) Conference Will Connect New and Emerging Innovators in the Northeastern US and Canada with Industry Leaders and Strategic Investors to Discuss Future Growth Opportunities in NYS March 25th, 2015

FEI Joins University of Ulm and CEOS on SALVE Project Research Collaboration: The Sub-Ångström Low Voltage Electron (SALVE) microscope should improve contrast and reduce damage on bio-molecules and two-dimensional nanomaterials, such as graphene March 18th, 2015

Nanomedicine

Novel nanoparticle therapy promotes wound healing March 27th, 2015

Graphene reduces wear of alumina ceramic March 26th, 2015

Application of Graphene Oxide in Body Implants in Iran March 26th, 2015

Nanotechnology in Medical Devices Market is expected to reach $8.5 Billion by 2019 March 25th, 2015

Announcements

UT Dallas engineers twist nanofibers to create structures tougher than bulletproof vests March 27th, 2015

Novel nanoparticle therapy promotes wound healing March 27th, 2015

Designer's toolkit for dynamic DNA nanomachines: Arm-waving nanorobot signals new flexibility in DNA origami March 27th, 2015

Using magnetic fields to understand high-temperature superconductivity: Los Alamos explores experimental path to potential 'next theory of superconductivity' March 27th, 2015

Quantum Dots/Rods

Tiny bio-robot is a germ suited-up with graphene quantum dots March 24th, 2015

Rice fine-tunes quantum dots from coal: Rice University scientists gain control of electronic, fluorescent properties of coal-based graphene March 18th, 2015

Ghent University leads large-scale European training project on quantum dots March 13th, 2015

Optical nanoantennas set the stage for a NEMS lab-on-a-chip revolution February 24th, 2015

Nanobiotechnology

Designer's toolkit for dynamic DNA nanomachines: Arm-waving nanorobot signals new flexibility in DNA origami March 27th, 2015

Dolomite’s microfluidics technology ideal for B cell encapsulation March 24th, 2015

Tiny bio-robot is a germ suited-up with graphene quantum dots March 24th, 2015

TGAC's take on the first portable DNA sequencing 'laboratory': First remote laboratory allows researchers to conduct real-time anaylsis March 19th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE