Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Bold Medicine, Golden Innovation

Xenia Kachur, a graduate student in the Biomedical Engineering Graduate Interdisciplinary Program at the University of Arizona, is working on methods to deliver chemotherapeutic drugs to cancer tissues without harming healthy body cells. Photo credit: Beatriz Verdugo/UANews
Xenia Kachur, a graduate student in the Biomedical Engineering Graduate Interdisciplinary Program at the University of Arizona, is working on methods to deliver chemotherapeutic drugs to cancer tissues without harming healthy body cells. Photo credit: Beatriz Verdugo/UANews

Abstract:
One day, building on the bold work being done by Marek Romanowski and his students, those suffering cancer may be able to receive effective chemotherapy treatment, confident that they will not have to endure the side effects. To a patient facing such treatments, such confidence will be as good as gold.

Bold Medicine, Golden Innovation

Tucson, AZ | Posted on January 31st, 2011

The upside of chemotherapy is that it attacks cancer cells and kills them. The downside - and a steep downside it is - is that it is composed of highly toxic compounds that attack other cells of the body, too, resulting in any number of harmful side effects, from anemia to hair loss to nausea and vomiting.

The question concerning researchers is how do we deliver chemotherapy drugs to the harmful cells and leave the healthy cells alone?

Marek Romanowski, Ph.D. associate professor of biomedical engineering at the UA College of Engineering and member of the BIO5 Institute and the Arizona Cancer Center, and his team might be on to an answer. In a paper authored by primary investigator Sarah Leung, along with Xenia Kachur, Michael Bobnick and Dr. Romanowski, Leung describes an idea that is literally golden.

Chemotherapy drugs are sometimes delivered via microscopic capsules called liposomes made of organic lipids already present in cells. These lipid casings, used in a technique called liposomal therapy, do two things. First, they allow the drugs to more effectively penetrate into cancer cells. At the same time, they keep the body's immune system from eliminating the drugs before they can do their jobs.

The problem is that, as the liposomes degrade, the drugs are potentially released indiscriminately throughout the body. So, how can we force these capsules to release their contents only around those unhealthy tumor cells?

Romanowski and his team are experimenting by coating liposomes with gold, an element which has the property of converting infrared light into heat.

"The heat causes the liposome to become leaky, and then whatever's really concentrated inside can diffuse out through the liposome," says Kachur, a third-year graduate student in the Biomedical Engineering Graduate Interdisciplinary Program.

The idea works because infrared light has the ability to penetrate deeply through the body.

"Once you know where the tumors are, you can go ahead and point your light source toward those areas. Whatever else is left will leave the body or may be slowly released, but not to as high or as toxic of levels as it would be if you just injected the drug systemically," said Leung, a fourth-year graduate student.

One last bonus to the proposed innovation is that the kidneys can naturally filter and eliminate the biodegraded gold nanostructures from the body.

If successful, the gold-coated liposomes being developed at the UA could offer a new way to target delivery of drugs to cancerous regions of the body, non-invasively trigger the drugs' release using infrared light, and provide a way for the body to naturally eliminate the toxic byproducts.

One day, building on the bold work being done by Marek Romanowski and his students, those suffering cancer may be able to receive effective chemotherapy treatment, confident that they will not have to endure the side effects. To a patient facing such treatments, such confidence will be as good as gold.

The paper, "Wavelength-selective Light-induced Release from Plasmon Resonant Liposomes," will appear in the journal Advanced Functional Materials. Learn more about the Department of Biomedical Engineering at bme.engr.arizona.edu/.

####

For more information, please click here

Copyright © University of Arizona

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Australian startup creates world’s first 100% cotton hydrophobic T-Shirts November 26th, 2014

The mysterious 'action at a distance' between liquid containers November 26th, 2014

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

Lawrence Livermore researchers develop efficient method to produce nanoporous metals November 25th, 2014

Possible Futures

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Researchers discern the shapes of high-order Brownian motions November 17th, 2014

VDMA Electronics Production Equipment: Growth track for 2014 and 2015 confirmed: Business climate survey shows robust industry sector November 14th, 2014

Open Materials Development Will Be Key for HP's Success in 3D Printing: HP can make a big splash in 3D printing, but it needs to shore up technology claims and avoid the temptation of the razor/razor blade business model in order to flourish November 11th, 2014

Academic/Education

SUNY Poly Student Awarded Fellowship with the U.S. Department of Energy's Postgraduate Research Program: Ph.D. Candidate Accepts Postmaster's Appointment To Conduct Research At Albany NanoTech Complex November 13th, 2014

SUNY Polytechnic Institute Hosts Massive Crowd of More Than 3,000 People Who Attended Community Day Activities Across New York State: CNSE’s ‘NANOvember’ kickoff event highlights New York State’s growing high-tech sector with open house events in Albany, Utica, and Rochester November 3rd, 2014

SUNY Polytechnic Institute Invites the Public to Attend its Popular Statewide 'NANOvember' Series of Outreach and Educational Events October 23rd, 2014

First Canada Excellence Research Chair gets $10 million from the federal government for oilsands research at the University of Calgary: Federal government announces prestigious research chair to study improving oil production efficiency October 19th, 2014

Nanomedicine

Vegetable oil ingredient key to destroying gastric disease bacteria: In mice, therapeutic nanoparticles dampen H. pylori bacteria and inflammation that lead to ulcers and gastric cancer November 25th, 2014

Research reveals how our bodies keep unwelcome visitors out of cell nuclei November 24th, 2014

ASU, IBM move ultrafast, low-cost DNA sequencing technology a step closer to reality November 24th, 2014

An Inside Job: UC-Designed Nanoparticles Infiltrate, Kill Cancer Cells From Within November 24th, 2014

Announcements

Australian startup creates world’s first 100% cotton hydrophobic T-Shirts November 26th, 2014

The mysterious 'action at a distance' between liquid containers November 26th, 2014

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

Research yields material made of single-atom layers that snap together like Legos November 25th, 2014

Nanobiotechnology

Quantum mechanical calculations reveal the hidden states of enzyme active sites November 20th, 2014

Tokyo Institute of Technology research: Protein-engineered cages aid studies of cell functions November 19th, 2014

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Implementation of DNA Chains in Designing Nanospin Pieces November 9th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More












ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE