Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Debunking Solar Energy Efficiency Measurements

Prof. Eran Rabani
Prof. Eran Rabani

Abstract:
TAU "recalculates" efficiency paradigm for thin film solar panels

Debunking Solar Energy Efficiency Measurements

Tel Aviv | Posted on January 24th, 2011

In recent years, developers have been investigating light-harvesting thin film solar panels made from nanotechnology — and promoting efficiency metrics to make the technology marketable. Now a Tel Aviv University researcher is providing new evidence to challenge recent "charge" measurements for increasing solar panel efficiency.

Offering a less expensive, smaller solution than traditional panels, Prof. Eran Rabani of Tel Aviv University's School of Chemistry at the Raymond and Beverly Sackler Faculty of Exact Sciences puts a lid on some current hype that promises to increase efficiencies in thin film panels. His research, published recently in the journals Nano Letters and Chemical Physics Letters, may bring the development of new solar energy technologies more down to earth.

Prof. Rabani combines a new theoretical approach with computer simulations. "Our theory shows that current predictions to increase efficiencies won't work. The increase in efficiencies cannot be achieved yet through Multiexciton Generation, a process by which several charge carriers (electrons and holes) are generated from one photon," he says.

Inefficient as "charged"

But both new and existing theories bode well for the development of other strategies in future solar energy technology, he points out. Newer approaches published in journals such as Science may provide means for increasing the efficiencies of solar technology, and perhaps would also be useful in storage of solar energy, Prof. Rabani and his team of researchers believe.

A chemical physicist, Prof. Rabani investigates how to separate charges from the sun efficiently. In 2004, physicists suggested that more than one electron-hole pair could be pulled from one photon in a complicated process in semiconductor nanocrystals. If this were possible, the charge would be doubled, and so the solar energy efficiency would increase. "We've shown that this idea doesn't work," Prof. Rabani says.

One step closer to marketing the sun

The development of more efficient and less expensive devices to make use of solar energy is one of the greatest challenges in science today. Billions of dollars are being spent to find the best methods to collect electron "charges" from the sun.

Typically, one photon from the sun absorbed in a thin film solar panel can excite one electron-hole pair, which is then converted to electricity. Currently there are claims that if more electron-hole pairs can be excited after the photon is absorbed, a larger fraction of the photon energy can successfully be converted into electricity, thus increasing device efficiency.

The theory that Prof. Rabani developed with his Israeli colleagues shows why this process is not as efficient as originally conceived. It's bad news for panel producers looking to create more efficient solar panels, but good news for researchers who are now free to look to the next realistic step for developing a technology that works.

Prof. Rabani is now on sabbatical at the University of California, Berkeley as a Miller Visiting Professor.

####

For more information, please click here

Copyright © Tel Aviv University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Dolomite to launch Meros TCU-100 temperature controller at Lab-on-a-Chip & Microarray World Congress September 15th, 2014

Fonon at Cutting-Edge of 3D Military Printing: Live-Combat Scenarios Could See a Decisive Advantage with 3D Printing September 15th, 2014

Rice rolls 'neat' nanotube fibers: Rice University researchers' acid-free approach leads to strong conductive carbon threads September 15th, 2014

Simple, Cost-Effective Method Proposed for Synthesizing Zinc Oxide Nanopigments September 15th, 2014

Academic/Education

Malvern technology delivers Malvern reliability in multi-disciplinary lab at Queen Mary University London September 9th, 2014

State University of New York Trustees Unanimously Approve SUNY Polytechnic Institute (SUNY Poly) as New Name for Merged SUNY CNSE / SUNYIT September 9th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

RMIT delivers $30m boost to micro and nano-tech August 26th, 2014

Announcements

Dolomite to launch Meros TCU-100 temperature controller at Lab-on-a-Chip & Microarray World Congress September 15th, 2014

Fonon at Cutting-Edge of 3D Military Printing: Live-Combat Scenarios Could See a Decisive Advantage with 3D Printing September 15th, 2014

Rice rolls 'neat' nanotube fibers: Rice University researchers' acid-free approach leads to strong conductive carbon threads September 15th, 2014

Simple, Cost-Effective Method Proposed for Synthesizing Zinc Oxide Nanopigments September 15th, 2014

Energy

Rice rolls 'neat' nanotube fibers: Rice University researchers' acid-free approach leads to strong conductive carbon threads September 15th, 2014

Simple, Cost-Effective Method Proposed for Synthesizing Zinc Oxide Nanopigments September 15th, 2014

UT Arlington research uses nanotechnology to help cool electrons with no external sources September 11th, 2014

Excitonic Dark States Shed Light on TMDC Atomic Layers: Berkeley Lab Discovery Holds Promise for Nanoelectronic and Photonic Applications September 11th, 2014

Solar/Photovoltaic

Simple, Cost-Effective Method Proposed for Synthesizing Zinc Oxide Nanopigments September 15th, 2014

Indium/Copper Sulfide Compound Semi-Conductor Synthesized through New Method September 8th, 2014

Material development on the nanoscale: Doped graphene nanoribbons with potential September 8th, 2014

Layered graphene sandwich for next generation electronics September 8th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE