Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanotechnology Institute creates safe endoscopes

Abstract:
An interdisciplinary team of Drexel researchers have created the first endoscope that can probe an individual cell without causing harm - a discovery that could have wide-ranging scientific benefits, according to project coordinator Yury Gogotsi.

by Josh Kurtz

Nanotechnology Institute creates safe endoscopes

Philadelphia, PA | Posted on January 21st, 2011

Gogotsi is director of the A. J. Drexel Nanotechnology Institute as well as a materials science and engineering professor.

The ability to inject single cells is described by Gogotsi as "one of the pipe dreams existing for a very long time" in the field of nanotechnology. He added that such a vision is popular in artists' renderings for nanotechnology.

Gogotsi explained that one reason for this interest in a single cell endoscope is because much of current cell experimentation destroys tested cells. He said the fact that Drexel's endoscope can study parts of single cells without affecting the cell itself "is very important for cell biology."

In addition, Gogotsi said being able to look at single cells could greatly help researchers create new drugs.

The Drexel researchers made the endoscope by placing a carbon nanotube, which is roughly a thousand times thinner than a human hair, onto the tip of a glass pipette. The endoscope conducts electricity in order to take electrochemical measurements in cells. Gogotsi said that because cells send signals using ionic currents, "measuring these currents is very important."

The endoscope is also magnetic and fluorescent, allowing scientists to move it around the cell and see it under a microscope.

Riju Singhal, a doctoral student in materials engineering and a member of the project team, said the endoscope is the "most advanced tool that exists right now for [single cell] studies."

The researchers' results were published in Nature Nanotechnology, the top nanotechnology journal according to Gogotsi. The article appeared on the journal's website in December and in print in January.

"Researchers in the … world are excited" about the opportunities the cellular endoscope could create, Gogotsi said. He added that in science many discoveries become possible due to new tools, and that "we believe the [endoscope] will help us understand how cells function better than we do now."

The research team has had a conference with what Gogotsi said was a "major company" that is interested in licensing the endoscope technology. Drexel has also filed five patent applications and two provisional patent applications related to the project.

Gogotsi added that it could take a few years before the cellular endoscope technology is available commercially. He said this is typical in such situations.

The team has worked with Drexel's Office of Technology Transfer and Commercialization, which works on protecting intellectual property as well as marketing and licensing Drexel research.

Gogotsi said Drexel wants to "really affect [the] life of people" through scientific and technological advances. He said he hopes the endoscopes will eventually be produced in large quantities.

The Drexel researchers who created the endoscope come from disciplines including electrical engineering, materials science and engineering, biology and biochemistry and biomedical engineering.

"People with all this background were working together as a team" to solve this issue, Gogotsi said. He credited the team's breadth of knowledge for the creation of the endoscope.

Gogotsi said working with and learning from the members of the interdisciplinary team was one of the most rewarding parts of the project for him, adding that the ability to assemble a team with experts from different fields is one example of the benefits of a research university.

The team members are a part of the A.J. Drexel Nanotechnology Institute, which allows different disciplines to work together on nanotechnology issues, according to Gogotsi.

He said in modern science, most discoveries are made by teams, since most discoveries that can be made by individuals have already been made.

Singhal said it was "a great learning experience interacting with people from the different departments."

Singhal said the endoscope project has been his most memorable experience at Drexel.

He added that the process was challenging and often did not yield the desired results, but that when things worked correctly it was "very delightful."

Singhal is currently helping with a project that is an extension of the single-cell endoscope. The new project involves using carbon nanotubes to remove and separate the contents of a cell. Singhal added that the project could potentially have many industry applications for separating very small particles, such as in crude oil.

As part of his work with the original project, Singhal made a presentation in an engineers' conference in Vancouver, Canada. He said other Drexel researchers have also presented on parts of the endoscope project.

Funding for the single-cell endoscope project was provided by the W. M. Keck Foundation. The Foundation provided a grant of $1 million, according to Gogotsi, and also established the Keck Institute for Attofluidic Nanotube-based Probes at Drexel, according to the Drexel team's article in Nature Nanotechnology.

The Drexel team has used the Keck Foundation's funding for the past three years, according to Gogotsi.

According to the Drexel press release on the project, funding was also provided by a Nanoscale Interdisciplinary Research Team National Science Foundation grant.

####

For more information, please click here

Copyright © Drexel University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Nanomedicine

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project