Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Nanotechnology Institute creates safe endoscopes

Abstract:
An interdisciplinary team of Drexel researchers have created the first endoscope that can probe an individual cell without causing harm - a discovery that could have wide-ranging scientific benefits, according to project coordinator Yury Gogotsi.

by Josh Kurtz

Nanotechnology Institute creates safe endoscopes

Philadelphia, PA | Posted on January 21st, 2011

Gogotsi is director of the A. J. Drexel Nanotechnology Institute as well as a materials science and engineering professor.

The ability to inject single cells is described by Gogotsi as "one of the pipe dreams existing for a very long time" in the field of nanotechnology. He added that such a vision is popular in artists' renderings for nanotechnology.

Gogotsi explained that one reason for this interest in a single cell endoscope is because much of current cell experimentation destroys tested cells. He said the fact that Drexel's endoscope can study parts of single cells without affecting the cell itself "is very important for cell biology."

In addition, Gogotsi said being able to look at single cells could greatly help researchers create new drugs.

The Drexel researchers made the endoscope by placing a carbon nanotube, which is roughly a thousand times thinner than a human hair, onto the tip of a glass pipette. The endoscope conducts electricity in order to take electrochemical measurements in cells. Gogotsi said that because cells send signals using ionic currents, "measuring these currents is very important."

The endoscope is also magnetic and fluorescent, allowing scientists to move it around the cell and see it under a microscope.

Riju Singhal, a doctoral student in materials engineering and a member of the project team, said the endoscope is the "most advanced tool that exists right now for [single cell] studies."

The researchers' results were published in Nature Nanotechnology, the top nanotechnology journal according to Gogotsi. The article appeared on the journal's website in December and in print in January.

"Researchers in the world are excited" about the opportunities the cellular endoscope could create, Gogotsi said. He added that in science many discoveries become possible due to new tools, and that "we believe the [endoscope] will help us understand how cells function better than we do now."

The research team has had a conference with what Gogotsi said was a "major company" that is interested in licensing the endoscope technology. Drexel has also filed five patent applications and two provisional patent applications related to the project.

Gogotsi added that it could take a few years before the cellular endoscope technology is available commercially. He said this is typical in such situations.

The team has worked with Drexel's Office of Technology Transfer and Commercialization, which works on protecting intellectual property as well as marketing and licensing Drexel research.

Gogotsi said Drexel wants to "really affect [the] life of people" through scientific and technological advances. He said he hopes the endoscopes will eventually be produced in large quantities.

The Drexel researchers who created the endoscope come from disciplines including electrical engineering, materials science and engineering, biology and biochemistry and biomedical engineering.

"People with all this background were working together as a team" to solve this issue, Gogotsi said. He credited the team's breadth of knowledge for the creation of the endoscope.

Gogotsi said working with and learning from the members of the interdisciplinary team was one of the most rewarding parts of the project for him, adding that the ability to assemble a team with experts from different fields is one example of the benefits of a research university.

The team members are a part of the A.J. Drexel Nanotechnology Institute, which allows different disciplines to work together on nanotechnology issues, according to Gogotsi.

He said in modern science, most discoveries are made by teams, since most discoveries that can be made by individuals have already been made.

Singhal said it was "a great learning experience interacting with people from the different departments."

Singhal said the endoscope project has been his most memorable experience at Drexel.

He added that the process was challenging and often did not yield the desired results, but that when things worked correctly it was "very delightful."

Singhal is currently helping with a project that is an extension of the single-cell endoscope. The new project involves using carbon nanotubes to remove and separate the contents of a cell. Singhal added that the project could potentially have many industry applications for separating very small particles, such as in crude oil.

As part of his work with the original project, Singhal made a presentation in an engineers' conference in Vancouver, Canada. He said other Drexel researchers have also presented on parts of the endoscope project.

Funding for the single-cell endoscope project was provided by the W. M. Keck Foundation. The Foundation provided a grant of $1 million, according to Gogotsi, and also established the Keck Institute for Attofluidic Nanotube-based Probes at Drexel, according to the Drexel team's article in Nature Nanotechnology.

The Drexel team has used the Keck Foundation's funding for the past three years, according to Gogotsi.

According to the Drexel press release on the project, funding was also provided by a Nanoscale Interdisciplinary Research Team National Science Foundation grant.

####

For more information, please click here

Copyright © Drexel University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers find the 'key' to quantum network solution May 25th, 2015

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Engineering Phase Changes in Nanoparticle Arrays: Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials May 25th, 2015

Possible Futures

Simulations predict flat liquid May 21st, 2015

Nature inspires first artificial molecular pump: Simple design mimics pumping mechanism of life-sustaining proteins found in living cells May 19th, 2015

NNCO and Museum of Science Fiction to Collaborate on Nanotechnology and 3D Printing Panels at Awesome Con May 19th, 2015

Quantum 'gruyres' for spintronics of the future: Topological insulators become a little less 'elusive' May 12th, 2015

Academic/Education

SUNY Poly CNSE and NIOSH Launch Federal Nano Health and Safety Consortium: May 20th, 2015

New JEOL E-Beam Lithography System to Enhance Quantum NanoFab Capabilities May 6th, 2015

FEI Partners With the George Washington University to Equip New Science & Engineering Hall: Suite of new high-performance microscopes will be used for cutting-edge experiments at GWs new research facility April 29th, 2015

Renishaw Raman systems used to study 2D materials at Boston University, Massachusetts, USA. April 28th, 2015

Nanomedicine

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

Iranian Scientists Use Magnetic Field to Transfer Anticancer Drug to Tumor Tissue May 24th, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Announcements

Researchers find the 'key' to quantum network solution May 25th, 2015

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Engineering Phase Changes in Nanoparticle Arrays: Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials May 25th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project