Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Purdue team creates 'engineered organ' model for breast cancer research

Purdue researchers' new model for breast cancer research, called "breast on-a-chip," mimics the branching mammary duct system. (Purdue University/Leary laboratory - Reproduced by permission of The Royal Society of Chemistry)
Purdue researchers' new model for breast cancer research, called "breast on-a-chip," mimics the branching mammary duct system. (Purdue University/Leary laboratory - Reproduced by permission of The Royal Society of Chemistry)

Abstract:
Purdue researchers' new model for breast cancer research, called "breast on-a-chip," mimics the branching mammary duct system.

Purdue team creates 'engineered organ' model for breast cancer research

West Lafayette, IN | Posted on January 21st, 2011

Purdue University researchers have reproduced portions of the female breast in a tiny slide-sized model dubbed "breast on-a-chip" that will be used to test nanomedical approaches for the detection and treatment of breast cancer.

The model mimics the branching mammary duct system, where most breast cancers begin, and will serve as an "engineered organ" to study the use of nanoparticles to detect and target tumor cells within the ducts.

Sophie Lelièvre, associate professor of basic medical sciences in the School of Veterinary Medicine, and James Leary, SVM Professor of Nanomedicine and professor of basic medical sciences in the School of Veterinary Medicine and professor of biomedical engineering in the Weldon School of Biomedical Engineering, led the team.

"Breast cancer is the most common cancer in women in most countries, and in the U.S. alone nearly 40,000 women lost their lives to it this past year," said Lelièvre, who is associate director of discovery groups in the Purdue Center for Cancer Research and a leader of the international breast cancer and nutrition project in the Oncological Sciences Center. "We've known that the best way to detect this cancer early and treat it effectively would be to get inside the mammary ducts to evaluate and treat the cells directly, and this is the first step in that direction."

Lelièvre and Leary hope eventually to be able to introduce magnetic nanoparticles through openings in the nipple, use a magnetic field to guide them through the ducts where they would attach to cancer cells and then reverse the magnetic field to retract any excess nanoparticles.

The nanoparticles could carry contrast agents to improve mammography, fluorescent markers to guide surgeons or anticancer agents to treat the cancer, Leary said.

"Nanoparticles can be designed to latch on to cancer cells and illuminate them, decreasing the size of a tumor that can be detected through mammography from 5 millimeters to 2 millimeters, which translates into finding the cancer 10 times earlier in its evolution," Leary said. "There also is great potential for nanoparticles to deliver anticancer agents directly to the cancer cells, eliminating the need for standard chemotherapy that circulates through the entire body causing harmful side effects."

Physicians have tried to access the mammary ducts through the nipple in the past, injecting fluid solutions to try to wash out cells that could be examined and used for a diagnosis of cancer. However, this approach could only reach the first third of the breast due to fluid pressure from the ducts, which branch and become smaller and smaller as they approach the glands that produce milk, Leary said.

"The idea is that nanoparticles with a magnetic core can float through the naturally occurring fluid in the ducts and be pulled by a magnet as opposed to being pushed with pressure," he said. "We think they could reach all the way to the back of the ducts, where it is believed most breast cancers originate. Of course, we are only at the earliest stages and many tests need to be done."

Such tests could not be done using standard models that grow cells across a flat surface in a plastic dish, so the team created the artificial organlike model in which living cells line a three-dimensional replica of the smallest portions of the mammary ducts.

Leary is internationally known for his nanofabrication work using photolithography to build tiny, precise structures on thin pieces of silicon to create high-speed cell sorting and analysis tools. He used the same techniques to build a mold of branching channels out of a rubberlike material called polydimethylsiloxane. The channels are about 5 millimeters long of various diameters from 20 microns to 100 microns, roughly the diameter of a human hair, that match what is found near the end of the mammary duct system.

Lelièvre, whose group is one of the few in the world able to successfully grow the complicated cells that line the mammary ducts, coaxed the cells to grow within the mold and behave as they would within a real human breast.

"The cells within the breast ductal system have a very specific organization that has proven difficult to obtain in a laboratory," Lelièvre said. "The cells have different sides, and one side must face the wall of the duct and the other must face the inner channel. Reproducing this behavior is very challenging, and it had never been achieved on an artificial structure before."

The team coated the mold in a protein-based substance called laminin 111 as a foundation for the cells that allows them to attach to the mold and behave as they would inside the body, Lelièvre said.

Because injecting the delicate cells into the finished channels of the mold caused too much damage, the team created a removable top for the channels.

"The design of the U-shaped channels and top was necessary for us to be able to successfully apply the cells, but it also allows us to make changes quickly and easily for different tests," Lelièvre said. "We can easily introduce changes among the cells or insert a few tumor cells to test the abilities of the nanoparticles to recognize them. The design also makes it very easy to evaluate the results as the entire model fits under a microscope."

A paper detailing the team's work, which was funded by the U.S. Department of Defense, is published in the current issue of Integrative Biology. In addition to Lelièvre and Leary, co-authors include graduate student Meggie Grafton, research associate Lei Wang and postdoctoral researcher Pierre-Alexandre Vidi.

The team has demonstrated that nanoparticles can be moved within the bare channels of the mold filled with fluid, but has not yet moved nanoparticles through the finished model lined with living cells, Lelièvre said.

The team next plans to create and test nanoparticles with a slippery surface that will prevent them from sticking to the cells as they travel through the channels and coatings that contain antibodies to target and attach to specific types of cancerous and precancerous cells, she said.

"Although we are at the very beginning stages of this work, we are hopeful that this nanomedical approach will one day save lives and provide patients with an easier road to recovery," Lelièvre said. "The successful creation of this model is an important milestone in this work and it is a testament to what can be accomplished through multidisciplinary research."

Lelièvre and Leary are both members of the Purdue Center for Cancer Research and the Oncological Sciences Center. Leary also is a member of the Birck Nanotechnology Center and Bindley Bioscience Center at Purdue's Discovery Park.

ABSTRACT

Breast On-a-Chip: Mimicry of the Channeling System of the Breast
for Development of Theranostics


Meggie M.G. Grafton, Lei Wang, Pierre-Alexandre Vidi,
James Leary, and Sophie A. Lelièvre

Improved detection and therapy of breast neoplasia might benefit from nanodevices traveling inside mammary ducts. However, the decreasing size of branched mammary ducts prevents access to remote areas of the ductal system using a pressure-driven, fluid-based approach. Magnetic field guidance of superparamagnetic submicron particles (SMPs) in a stationary fluid might provide a possible alternative but it is critical to first reproduce the breast ductal system to assess the use of such devices for future therapeutic and diagnostic ("theranostic") purposes. Here we describe the engineering of a portion of a breast ductal system using polydimethylsiloxane (PDMS) microfluidic channels with a total volume of 0.09 microliters. A magnet was used to move superparamagnetic/fluorescent SMPs through a static fluid inside the microchannels. Non-neoplastic mammary epithelial S1 cells developed basoapical polarity as a flat monolayer on the PDMS surface when cultured in the presence of laminin 111, and incubation with SMPs did not result in detectable toxicity. Cells could not withstand the fluid pressure if microinjected directly in completed channels. Whereas, they readily covered laminin 111-coated PDMS surfaces when cultured in U-shaped "hemichannels" before completing the channels. This breast on-a-chip model represents a critical step towards the mimicry of the tree-like ductal system of the breast for further testing and targeting of SMPs.

####

For more information, please click here

Contacts:
Writer:
Elizabeth K. Gardner
765-494-2081


Sources:
Sophie Lelièvre
765-496-7793


James Leary
765-494-7280

Copyright © Purdue University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Synthetic Biology

Fast, efficient sperm tails inspire nanobiotechnology December 5th, 2016

Measuring forces in the DNA molecule: First direct measurements of base-pair bonding strength September 13th, 2016

Analog DNA circuit does math in a test tube: DNA computers could one day be programmed to diagnose and treat disease August 25th, 2016

'Green' electronic materials produced with synthetic biology July 16th, 2016

Possible Futures

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Academic/Education

Oxford Nanoimaging report on how the Nanoimager, a desktop microscope delivering single molecule, super-resolution performance, is being applied at the MRC Centre for Molecular Bacteriology & Infection November 22nd, 2016

The University of Applied Sciences in Upper Austria uses Deben tensile stages as an integral part of their computed tomography research and testing facility October 18th, 2016

Enterprise In Space Partners with Sketchfab and 3D Hubs for NewSpace Education October 13th, 2016

New Agricultural Research Center Debuts at UCF October 12th, 2016

Nanomedicine

Arrowhead Pharmaceuticals to Webcast Fiscal 2016 Year End Results December 7th, 2016

Fast, efficient sperm tails inspire nanobiotechnology December 5th, 2016

Journal Nanotechnology Progress International (JONPI) Volume 6, issue 2 coming out soon! December 5th, 2016

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Announcements

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Nanobiotechnology

Arrowhead Pharmaceuticals to Webcast Fiscal 2016 Year End Results December 7th, 2016

Fast, efficient sperm tails inspire nanobiotechnology December 5th, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Nanobiotix Provides Update on Global Development of Lead Product NBTXR3: Seven clinical trials across the world: More than 2/3 of STS patients recruited in the “act.in.sarc” Phase II/III trial: Phase I/II prostate cancer trial now recruiting in the U.S. November 28th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project