Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > Gold "Nano-Popcorn" Detects and Treats Tumors, Monitors Response to Therapy

"Prostate cancer is the second leading cause of cancer-related death among the American male population, and the cost of treating prostate cancer patients is about $10 billion/year in the United States. Current treatments are mostly ineffective against advanced-stage prostate cancer and are often associated with severe side effects. Driven by these factors, we report a multifunctional, nanotechnology-driven, gold nano-popcorn-based surface-enhanced Raman scattering (SERS) assay for targeted sensing, nanotherapy treatment, and in situ monitoring of photothermal nanotherapy response during the therapy process."  Credit J. Am. Chem. Soc.
"Prostate cancer is the second leading cause of cancer-related death among the American male population, and the cost of treating prostate cancer patients is about $10 billion/year in the United States. Current treatments are mostly ineffective against advanced-stage prostate cancer and are often associated with severe side effects. Driven by these factors, we report a multifunctional, nanotechnology-driven, gold nano-popcorn-based surface-enhanced Raman scattering (SERS) assay for targeted sensing, nanotherapy treatment, and in situ monitoring of photothermal nanotherapy response during the therapy process." Credit J. Am. Chem. Soc.

Abstract:
Using a two-step process that creates gold nanoparticles that look like kernels of popcorn, researchers at Jackson State University have created a targeted nanoparticle that can detect as few as 50 malignant prostate cells and serve as a thermal scalpel that can kill the cells. Moreover, the optical signal produced by these nanoparticles changes as cells die, providing a means of tracking the response of prostate tumor cells to thermal therapy.

Gold "Nano-Popcorn" Detects and Treats Tumors, Monitors Response to Therapy

Bethesda, MD | Posted on January 19th, 2011

Paresh Ray led the Jackson State team that conducted this study. The results of the team's work were published in the Journal of the American Chemical Society.

As synthesized, the nanoparticles themselves would be toxic in the body, but the researchers took advantage of the toxic component to attach tumor targeting aptamers and monoclonal antibodies to the popcorn-shaped gold constructs. When irradiated with light, the nanoparticles emit light at a different frequency that can be detected using surface-enhanced Raman spectroscopy, or SERS. The nanoparticles are such efficient SERS imaging agents that they produce a detectable optical signal after binding to clusters of a mere 50 cells thanks to the fact that the nanoparticles then aggregate into clusters that produce "hotspots" in a SERS image.

Once bound to prostate cancer cells, the gold nanoparticles can absorb light and convert it to heat, raising the local temperature to 48 C, which is sufficient to kill the tumor cells to which they are attached. During this experiment, the investigators noted that the SERS signal intensity decreased as the tumor cells died. Further study showed that there was a direct, linear correlation between the number of cells killed and the reduction in signal intensity, suggesting that this type of measurement could prove useful in assessing the therapeutic effect following photothermal therapy.

This work is detailed in a paper titled, "Gold Nano-Popcorn-Based Targeted Diagnosis, Nanotherapy Treatment, and in Situ Monitoring of Photothermal Therapy Response of Prostate Cancer Cells Using Surface-Enhanced Raman Spectroscopy." An abstract of this paper is available at the journal's website.

View abstract pubs.acs.org/doi/abs/10.1021/ja104924b

####

About NCI Alliance for Nanotechnology in Cancer
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Copyright © NCI Alliance for Nanotechnology in Cancer

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Scientists change properties of zeolites to improve hemodialysis July 29th, 2016

Novel state of matter: Observation of a quantum spin liquid July 29th, 2016

A new type of quantum bits July 29th, 2016

Lonely atoms, happily reunited July 29th, 2016

Possible Futures

Scientists change properties of zeolites to improve hemodialysis July 29th, 2016

Novel state of matter: Observation of a quantum spin liquid July 29th, 2016

A new type of quantum bits July 29th, 2016

Pixel-array quantum cascade detector paves the way for portable thermal imaging devices: Research team from TU-Wien Center for Micro- and Nanostructures have developed a new 'cooler' sensing instrument thereby increasing energy-efficiency and enhancing mobility for diagnostic tes July 28th, 2016

Academic/Education

Thomas Swan and NGI announce unique partnership July 28th, 2016

The NanoWizard® AFM from JPK is applied for interdisciplinary research at the University of South Australia for applications including smart wound healing and how plants can protect themselves from toxins July 26th, 2016

News from Quorum: The College of New Jersey use the Quorum Cryo-SEM preparation system in a project to study ice crystals in high altitude clouds July 19th, 2016

Leti and Korea Institute of Science and Technology to Explore Collaboration on Advanced Technologies for Digital Era July 14th, 2016

Nanomedicine

Scientists change properties of zeolites to improve hemodialysis July 29th, 2016

Pixel-array quantum cascade detector paves the way for portable thermal imaging devices: Research team from TU-Wien Center for Micro- and Nanostructures have developed a new 'cooler' sensing instrument thereby increasing energy-efficiency and enhancing mobility for diagnostic tes July 28th, 2016

Starpharma initiates new DEP™ drug delivery program with AstraZeneca July 27th, 2016

Scientists test nanoparticle drug delivery in dogs with osteosarcoma July 26th, 2016

Announcements

Scientists change properties of zeolites to improve hemodialysis July 29th, 2016

Novel state of matter: Observation of a quantum spin liquid July 29th, 2016

A new type of quantum bits July 29th, 2016

Lonely atoms, happily reunited July 29th, 2016

Nanobiotechnology

Scientists change properties of zeolites to improve hemodialysis July 29th, 2016

Starpharma initiates new DEP™ drug delivery program with AstraZeneca July 27th, 2016

Scientists test nanoparticle drug delivery in dogs with osteosarcoma July 26th, 2016

Accurate design of large icosahedral protein nanocages pushes bioengineering boundaries: Scientists used computational methods to build ten large, two-component, co-assembling icosahedral protein complexes the size of small virus coats July 25th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic