Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Argonne battery technology helps power Chevy Volt

The Chevrolet Volt's battery contains technology invented at Argonne National Laboratory. Image courtesy General Motors.
The Chevrolet Volt's battery contains technology invented at Argonne National Laboratory. Image courtesy General Motors.

Abstract:
This month, thousands of new Chevy Volt owners will begin the real road tests of the first mass-produced plug-in hybrid electric car. While much of the car's engineering is unique, consumers may be unaware that some of its most extraordinary technology is inside the nearly 400-lb. battery that powers the vehicle in electric mode.

By Louise Lerner

Argonne battery technology helps power Chevy Volt

Argonne, IL | Posted on January 12th, 2011

The battery's chemistry is based in part on a revolutionary breakthrough pioneered by scientists at the U.S. Department of Energy's Argonne National Laboratory. The new development helps the Volt's battery—a lithium-ion design similar to those in your cell phone or laptop—last longer, run more safely and perform better than batteries currently on the market.

"To me this cuts right to the heart of green energy," said Jeff Chamberlain, who heads Argonne's battery research and development. "This battery technology is a step towards energy independence for the U.S.; it helps create jobs; and it can have a positive impact on the environment."

The story begins in the late 1990s, when the DOE's Office of Basic Energy Sciences funded an intensive study of lithium-ion batteries.

"Existing materials weren't good enough for a high-range vehicle," explained Michael Thackeray, an Argonne Distinguished Fellow who is one of the holders of the original patent. "The Argonne materials take a big step forward in extending the range for an electric vehicle."

In order to improve the design, scientists had to know how batteries worked at the atomic level.

"What we really needed to do was understand the molecular structure of the material," said Argonne chemist Chris Johnson.

At its most basic level, a lithium battery is composed of a negatively charged anode and a positively charged cathode. Between them is a thin membrane that allows only tiny, positively charged lithium ions to pass through. When a battery is fully charged, all of the lithium ions are contained in the anode. When you unplug the battery from the charger and begin to use it, the lithium ions flow from the anode through the membrane to react with the cathode—creating an electrical current.

The team wanted to improve the cathode, the positively charged material. They began by using incredibly intense X-rays from Argonne's Advanced Photon Source synchrotron to monitor and understand reactions that occur in lithium batteries—in real time. Next, they set out to modify and optimize the cathode materials. Using new synthesis methods, they created lithium- and manganese-rich materials that proved remarkably more stable than existing designs.

Because manganese-rich cathodes are more stable than those used in today's batteries, the new batteries are safer and less likely to overheat. Manganese is cheap, so the battery will cost less to manufacture. The researchers also upped the upper charging voltage limit to 4.6 volts—higher than the usual operating voltage—and saw a tremendous jump in the battery's energy capacity.

The Argonne battery design became, in a radical leap forward, cheaper, safer, and longer-lasting.

"To me, that's exceptional," Chamberlain said. "New advances often sacrifice cost or safety for performance; it's a rare breakthrough that improves all three."

Batteries for electric and plug-in hybrid cars are much larger—and thus far more expensive—than laptop batteries, and they make up a large percentage of the car's price. Lowering the cost of the battery will lower the cost of all-electric and hybrid cars, according to Khalil Amine, an Argonne senior materials scientist, and subsequent improvements will improve battery performance even further.

"Based on our data, the next generation of batteries will last twice as long as current models," Amine said.

The team—especially the co-holders of the original patent: Thackeray, Johnson, Amine, Jaekook Kim and Sun-Ho Kang—is happy to see the technology make its way from the laboratory to the road.

"I would love to point to a car on the street and tell my son, 'This car has our invention in it!'" Amine said.

"Seeing homegrown innovations going into a large-scale production like the Volt—that's really exciting and good for America," Johnson added. "It's really the ultimate goal for a researcher."

Furthermore, Chamberlain said that the new battery technology pioneered by the lab can boost American manufacturing and create new jobs.

"Batteries are a large, heavy component of electric and hybrid cars, and so it's best to manufacture them near the factory where the cars are assembled," Chamberlain explained. "This means cars assembled in U.S. factories will also need battery factories nearby—creating more American jobs."

A total of $1.5 billion in stimulus grants went to several companies last year—including A123 Systems, Johnson Controls and Compact Power, an LG-Chem subsidiary—to build battery plants in the U.S. (A full list of the grants is available online *)

Chamberlain, who worked in private industry for 13 years before joining Argonne in 2006, says the national laboratories play a crucial role in developing these kinds of breakthrough technologies. "The labs perform basic research," he said. "In the U.S., businesses tend to invest in research that will pay off in the short term; in this field of research, the national laboratories are filling a gap by conducting the essential research that will change the game ten to 20 years down the road."

When companies show interest in the technology, he said, the labs collaborate with them to help adopt the method for large-scale production.

LG Chem licensed the technology from Argonne and used the materials to create the battery supplied for the 2011 Volt. GM has also licensed the technology to

"Seeing this play out is absolutely gratifying," Chamberlain said. "We're developing technology that I'm highly confident will help make plug-in hybrid cars more economic. The work at Argonne ends up in the hands of taxpayers who paid for research. This is a fulcrum, a key component to moving away from fossil fuels."

The technology remains available for licensing.

(*) www.whitehouse.gov/the_press_office/24-Billion-in-Grants-to-Accelerate-the-Manufacturing-and-Deployment-of-the-Next-Generation-of-US-Batteries-and-Electric-Vehicles/

####

About Argonne National Laboratory
Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America 's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

For more information, please click here

Contacts:
Angela Hardin
630/252-5501

Copyright © Argonne National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Engineers show light can play seesaw at the nanoscale: Discovery is another step toward faster and more energy-efficient optical devices for computation and communication September 22nd, 2014

New chip promising for tumor-targeting research September 22nd, 2014

Twisted graphene chills out: When two sheets of graphene are stacked in a special way, it is possible to cool down the graphene with a laser instead of heating it up, University of Manchester researchers have shown September 22nd, 2014

New star-shaped molecule breakthrough: Scientists at The University of Manchester have generated a new star-shaped molecule made up of interlocking rings, which is the most complex of its kind ever created September 22nd, 2014

Chemistry

New star-shaped molecule breakthrough: Scientists at The University of Manchester have generated a new star-shaped molecule made up of interlocking rings, which is the most complex of its kind ever created September 22nd, 2014

Synthesis of Nanostructures with Controlled Shape, Size in Iran September 22nd, 2014

Iranian Scientists Separate Zinc Ion at Low Concentrations September 20th, 2014

Jobs

Secretary Vilsack Announces Partnership to Advance Commercial Potential of Cellulosic Nanomaterial from Wood December 11th, 2013

Cutting Away at the NRC's Research Capability December 6th, 2013

Project aims to mass-produce 'nanopetals' for sensors, batteries October 22nd, 2013

Governor Cuomo Announces 'Nano Utica' $1.5 Billion Public-Private Investment That Will Make the Mohawk Valley New York's Next Major Hub of Nanotech Research October 12th, 2013

Govt.-Legislation/Regulation/Funding/Policy

Engineers show light can play seesaw at the nanoscale: Discovery is another step toward faster and more energy-efficient optical devices for computation and communication September 22nd, 2014

New chip promising for tumor-targeting research September 22nd, 2014

New star-shaped molecule breakthrough: Scientists at The University of Manchester have generated a new star-shaped molecule made up of interlocking rings, which is the most complex of its kind ever created September 22nd, 2014

SouthWest NanoTechnologies (SWeNT) Receives NIST Small Business Innovation Research (SBIR) Phase 1 Award to Produce Greater than 99% Semiconducting Single-Wall Carbon Nanotubes September 19th, 2014

Possible Futures

Air Force’s 30-year plan seeks 'strategic agility' August 1st, 2014

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Announcements

Engineers show light can play seesaw at the nanoscale: Discovery is another step toward faster and more energy-efficient optical devices for computation and communication September 22nd, 2014

New chip promising for tumor-targeting research September 22nd, 2014

Twisted graphene chills out: When two sheets of graphene are stacked in a special way, it is possible to cool down the graphene with a laser instead of heating it up, University of Manchester researchers have shown September 22nd, 2014

New star-shaped molecule breakthrough: Scientists at The University of Manchester have generated a new star-shaped molecule made up of interlocking rings, which is the most complex of its kind ever created September 22nd, 2014

Patents/IP/Tech Transfer/Licensing

‘Small’ transformation yields big changes September 16th, 2014

Berkeley Lab Licenses Boron Nitride Nanotube Technology: New material has unique mechanical and electronic properties September 13th, 2014

Secure Computing for the ‘Everyman': Quantum computing goes to market in tech transfer agreement with Allied Minds September 2nd, 2014

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

Environment

Iranian Nano Scientists Create Flame-Resistant Polymers September 13th, 2014

NanoStruck has a High Recovery Rate on Mine Tailings: retrieval of up to 96% of Gold, 88% of Silver and 86% of Palladium September 12th, 2014

Nanostruck announces 87.6% recovery of 56 GMS/ton silver tailings samples September 12th, 2014

Boosting armor for nuclear-waste eating microbes September 12th, 2014

Energy

Iranian Researchers Synthesize Stable Ceramic Nanopowders at Room Temperature September 20th, 2014

IEEE International Electron Devices Meeting To Celebrate 60th Anniversary as The Leading Technical Conference for Advanced Semiconductor Devices September 18th, 2014

Rice rolls 'neat' nanotube fibers: Rice University researchers' acid-free approach leads to strong conductive carbon threads September 15th, 2014

Simple, Cost-Effective Method Proposed for Synthesizing Zinc Oxide Nanopigments September 15th, 2014

Automotive/Transportation

Next-Gen Luxury RV From Global Caravan Technologies Will Offer MagicView Roof and Windshield Using SPD-SmartGlass Technology From Research Frontiers: Recreational Vehicle Manufacturer Global Caravan Technologies (GCT) Features 28 Square Feet of MagicView™ SPD-SmartGlass September 17th, 2014

Toward making lithium-sulfur batteries a commercial reality for a bigger energy punch September 17th, 2014

Nanoribbon film keeps glass ice-free: Rice University lab refines deicing film that allows radio frequencies to pass September 16th, 2014

‘Small’ transformation yields big changes September 16th, 2014

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics

IEEE International Electron Devices Meeting To Celebrate 60th Anniversary as The Leading Technical Conference for Advanced Semiconductor Devices September 18th, 2014

Toward making lithium-sulfur batteries a commercial reality for a bigger energy punch September 17th, 2014

NEI Corporation and PneumatiCoat Technologies Sign Agreement to Jointly Develop and Market New Materials for Lithium-ion Batteries September 12th, 2014

UT Arlington research uses nanotechnology to help cool electrons with no external sources September 11th, 2014

Research partnerships

Biosensors Get a Boost from Graphene Partnership: $5 Million Investment Supports Dozens of Jobs and Development of 300mm Fabrication Process and Wafer Transfer Facility September 18th, 2014

The Pocket Project will develop a low-cost and accurate point-of-care test to diagnose Tuberculosis: ICN2 holds a follow-up meeting of the Project on September 18th - 19th September 18th, 2014

Recruiting bacteria to be technology innovation partners: September 17th, 2014

Carbon Sciences Developing Breakthrough Technology to Mass-Produce Graphene -- the New Miracle Material: Company Enters Into an Agreement With the University of California, Santa Barbara (UCSB) to Fund the Further Development of a New Graphene Process September 16th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE