Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > NIU scientists find fast, easy way to make hydrogen nanosensors

Abstract:
A team of Northern Illinois University scientists, with a major role played by NIU Ph.D. students, has discovered a new, convenient and inexpensive way to make high performance hydrogen sensors using palladium nanowires.

NIU scientists find fast, easy way to make hydrogen nanosensors

DeKalb, IL | Posted on January 12th, 2011

The technology could help enable a scale-up for potential industrial applications, such as safety monitors in future hydrogen-powered vehicles.

Highly flammable hydrogen gas cannot be odorized like natural gas. The new technology produces nanoscale sensors that work extremely fast and would allow for closing of safety valves before dangerous concentrations of the gas could be reached.

Scientists have known that palladium nanowires demonstrated promise as hydrogen gas sensors in speed, sensitivity and ultra-low power consumption. But the utilization of single palladium nanowires faced challenges in several areas, including nanofabrication.

"We report on hydrogen sensors that take advantage of single palladium nanowires in high speed and sensitivity and that can be easily and cheaply made," said lead author Xiaoqiao (Vivian) Zeng, a Ph.D. student in chemistry and biochemistry at NIU. The new research is published in the January edition of the American Chemical Society's prestigious journal Nano Letters.

"The new types of hydrogen sensors are based on networks of ultra-small (< 10 nanometers) palladium nanowires achieved by sputter-depositing palladium onto the surface of a commercially available and inexpensive filtration membrane," Zeng said.

The research was conducted at both Northern Illinois University and Argonne National Laboratory. The scientists also found that the speed of the sensors increases with decreasing thicknesses of the palladium nanowires. The sensors are 10 to 100 times faster than their counterparts made of a continuous palladium film of the same thickness.

"The superior performance of the ultra-small palladium nanowire network-based sensors demonstrates the novelty of the fabrication approach, which can be used to fabricate high-performance sensors for other gases," said NIU Presidential Research Professor of Physics Zhili Xiao, leader of the research team and co-adviser to Zeng.

Xiao noted that Zeng's exceptional contribution to the research is particularly impressive for a Ph.D. candidate. Zeng came to NIU in the fall of 2008 after earning her master's degree from the University of Science and Technology Beijing. She is now a recipient of the NIU Nanoscience Fellowship, jointly supported by the university and Argonne.

"It is extremely competitive to publish an article in Nano Letters, which has a very high impact factor that is better even than the traditionally prestigious chemical and physical journals," Xiao said. "We're proud of Vivian's achievements and grateful for her creativity and diligence.

"Nanoresearch is truly interdisciplinary," Xiao added. "Chemists have undoubtedly demonstrated advantages in nanofabrication by utilizing methods of chemical synthesis to obtain extreme nanostructures, while physicists have strengths in exploration of new physical properties at the nanoscale. This research benefitted tremendously from Vivian's expertise in chemistry. In fact, the substrates used to form the novel networks of palladium nanowires are common filtration members known to chemists."

Other members of the research team included NIU Chemistry and Biochemistry Professor Tao Xu; NIU physics Ph.D. candidate Michael Latimer; NIU physics graduate student SriHarsha Panuganti; and physicist Ulrich Welp and senior physicist Wai-Kwong Kwok of Argonne's Materials Science Division.

####

Contacts:
Media Contact:
Tom Parisi
NIU Media Relations & Internal Communications
Phone: (815) 753-3635

Copyright © Northern Illinois University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Academic/Education

AIM Photonics Announces Release of Process Design Kit (PDK) for Integrated Silicon Photonics Design August 25th, 2016

Nanotech Security Featured by Simon Fraser University: Company's Anti-Counterfeiting Technology Developed With the Help of University's 4D LABS Materials Research Institute August 21st, 2016

W.M. Keck Foundation awards Cal State LA a $375,000 research and education grant August 4th, 2016

Thomas Swan and NGI announce unique partnership July 28th, 2016

Sensors

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Down to the wire: ONR researchers and new bacteria August 18th, 2016

'Sniffer plasmons' could detect explosives: Scientists have proposed a graphene-based spaser that can detect even small amounts of various substances, including explosives August 16th, 2016

Perpetual 'ice water': Stable solid-liquid state revealed in nanoparticles: Gallium nanoparticles that are both solid and liquid are stable over a range of 1000 degrees Fahrenheit August 5th, 2016

Discoveries

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Nanofur for oil spill cleanup: Materials researchers learn from aquatic ferns: Hairy plant leaves are highly oil-absorbing / publication in bioinspiration & biomimetics / video on absorption capacity August 25th, 2016

Unraveling the crystal structure of a -70 Celsius superconductor, a world first: Significant advancement in the realization of room-temperature superconductors August 25th, 2016

Announcements

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Automotive/Transportation

Researchers reduce expensive noble metals for fuel cell reactions August 22nd, 2016

Researchers watch catalysts at work August 19th, 2016

Stanford-led team reveals nanoscale secrets of rechargeable batteries August 8th, 2016

New X-Ray microscopy technique images nanoscale workings of rechargeable batteries: Method developed at Berkeley Lab's Advanced Light Source could help researchers improve battery performance August 7th, 2016

Industrial

New flexible material can make any window 'smart' August 23rd, 2016

Industrial Nanotech, Inc. Provides Shareholder Update August 22nd, 2016

Let's roll: Material for polymer solar cells may lend itself to large-area processing: 'Sweet spot' for mass-producing polymer solar cells may be far larger than dictated by the conventional wisdom August 12th, 2016

Quantum dots with impermeable shell: A powerful tool for nanoengineering August 12th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic