Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > NIU scientists find fast, easy way to make hydrogen nanosensors

Abstract:
A team of Northern Illinois University scientists, with a major role played by NIU Ph.D. students, has discovered a new, convenient and inexpensive way to make high performance hydrogen sensors using palladium nanowires.

NIU scientists find fast, easy way to make hydrogen nanosensors

DeKalb, IL | Posted on January 12th, 2011

The technology could help enable a scale-up for potential industrial applications, such as safety monitors in future hydrogen-powered vehicles.

Highly flammable hydrogen gas cannot be odorized like natural gas. The new technology produces nanoscale sensors that work extremely fast and would allow for closing of safety valves before dangerous concentrations of the gas could be reached.

Scientists have known that palladium nanowires demonstrated promise as hydrogen gas sensors in speed, sensitivity and ultra-low power consumption. But the utilization of single palladium nanowires faced challenges in several areas, including nanofabrication.

"We report on hydrogen sensors that take advantage of single palladium nanowires in high speed and sensitivity and that can be easily and cheaply made," said lead author Xiaoqiao (Vivian) Zeng, a Ph.D. student in chemistry and biochemistry at NIU. The new research is published in the January edition of the American Chemical Society's prestigious journal Nano Letters.

"The new types of hydrogen sensors are based on networks of ultra-small (< 10 nanometers) palladium nanowires achieved by sputter-depositing palladium onto the surface of a commercially available and inexpensive filtration membrane," Zeng said.

The research was conducted at both Northern Illinois University and Argonne National Laboratory. The scientists also found that the speed of the sensors increases with decreasing thicknesses of the palladium nanowires. The sensors are 10 to 100 times faster than their counterparts made of a continuous palladium film of the same thickness.

"The superior performance of the ultra-small palladium nanowire network-based sensors demonstrates the novelty of the fabrication approach, which can be used to fabricate high-performance sensors for other gases," said NIU Presidential Research Professor of Physics Zhili Xiao, leader of the research team and co-adviser to Zeng.

Xiao noted that Zeng's exceptional contribution to the research is particularly impressive for a Ph.D. candidate. Zeng came to NIU in the fall of 2008 after earning her master's degree from the University of Science and Technology Beijing. She is now a recipient of the NIU Nanoscience Fellowship, jointly supported by the university and Argonne.

"It is extremely competitive to publish an article in Nano Letters, which has a very high impact factor that is better even than the traditionally prestigious chemical and physical journals," Xiao said. "We're proud of Vivian's achievements and grateful for her creativity and diligence.

"Nanoresearch is truly interdisciplinary," Xiao added. "Chemists have undoubtedly demonstrated advantages in nanofabrication by utilizing methods of chemical synthesis to obtain extreme nanostructures, while physicists have strengths in exploration of new physical properties at the nanoscale. This research benefitted tremendously from Vivian's expertise in chemistry. In fact, the substrates used to form the novel networks of palladium nanowires are common filtration members known to chemists."

Other members of the research team included NIU Chemistry and Biochemistry Professor Tao Xu; NIU physics Ph.D. candidate Michael Latimer; NIU physics graduate student SriHarsha Panuganti; and physicist Ulrich Welp and senior physicist Wai-Kwong Kwok of Argonne's Materials Science Division.

####

Contacts:
Media Contact:
Tom Parisi
NIU Media Relations & Internal Communications
Phone: (815) 753-3635

Copyright © Northern Illinois University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360’s Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

Academic/Education

Graphene: Progress, not quantum leaps May 23rd, 2016

Smithsonian Science Education Center and National Space Society Team Up for Next-Generation Space Education Program "Enterprise In Space" May 11th, 2016

The University of Colorado Boulder, USA, combines Raman spectroscopy and nanoindentation for improved materials characterisation May 9th, 2016

Albertan Science Lab Opens in India May 7th, 2016

Sensors

The next generation of carbon monoxide nanosensors May 26th, 2016

Dartmouth team creates new method to control quantum systems May 24th, 2016

Electronic device detects molecules linked to cancer, Alzheimer's and Parkinson's: An inexpensive portable biosensor has been developed by researchers at Brazil's National Nanotechnology Laboratory with FAPESP's support May 20th, 2016

Making organs transparent to improve nanomedicine (video) May 13th, 2016

Discoveries

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

PETA science group publishes a review on pulmonary effects of nanomaterials: Archives of Toxicology publishes a review of scientific studies on fibrotic potential of nanomaterials May 26th, 2016

Harnessing solar and wind energy in one device could power the 'Internet of Things' May 26th, 2016

Announcements

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360’s Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

Automotive/Transportation

Technique improves the efficacy of fuel cells: Research demonstrates a new phase transition from metal to ionic conductor May 18th, 2016

A View Through Wood Shows Futuristic Applications: Transparent wood made at UMD could create new windows, cars and solar panels May 5th, 2016

Speedy ion conduction in solid electrolytes clears road for advanced energy devices May 5th, 2016

New spin Seebeck thermoelectric device with higher conversion efficiency created April 26th, 2016

Industrial

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Solliance realizes first up-scaled Perovskite based PV modules with 10% efficiency: Holst Centre, imec and ECN pave the road to upscaling Perovskite PV modules May 10th, 2016

First single-enzyme method to produce quantum dots revealed: Biological manufacturing process, pioneered by three Lehigh University engineers, produces equivalent quantum dots to those made chemically--but in a much greener, cheaper way May 9th, 2016

Visualizing the Lithiation of a Nanosized Iron-Oxide Material in Real Time: Electron microscopy technique reveals the reaction pathways that emerge as lithium ions are added to magnetite nanoparticles May 9th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic