Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Team develops functionally graded shape memory polymers

Abstract:
A team led by Patrick T. Mather, director of Syracuse Biomaterials Institute (SBI) and Milton and Ann Stevenson professor of biomedical and chemical engineering in Syracuse University's L.C. Smith College of Engineering and Computer Science (LCS), has succeeded in applying the concept of functionally graded materials (FGMs) to shape memory polymers (SMPs).

By Ariel DuChene

Team develops functionally graded shape memory polymers

Syracuse, NY | Posted on January 7th, 2011

SMPs are a class of "smart" materials that can switch between two shapes, from a fixed (temporary) shape to a predetermined permanent shape. Shape memory polymers function as actuators, by first forming a heated article into a temporary shape and cooling. Then, by using a second stimulus (i.e. heat), the article can spring back to its original shape.

To date, SMPs have been limited to two-way and three-way shape configurations. Mather has successfully built a process where sections of one shape memory polymer independently react to different temperature stimuli. This work has been highlighted on the cover of the January 2011 issue of Soft Matter, the leading journal in the field of soft matter research.

Functionally graded materials are defined as synthetic materials where the composition, microstructure and other properties differ along sections of the material. The goal of Mather's research was to apply this theory to SMPs and create a material that could be fixed and recovered in one section without impacting the response of the other sections.

Mather created a temperature gradient plate by applying heat at one end and using a cooling unit at the other end. The actual temperature gradient was verified by measuring different positions along the plate. The SMP was cured on this plate to set the different transition temperatures.

Mather first tested the graded SMP by using micro-indention on the surface and then heating the polymer. When heated, each indentation recovered to the original smooth surface as each one's transition temperature was reached along the surface.

The second test involved cutting the SMP and bending back the cut sections. This SMP was placed on a Pelletier plate that uniformly heated the material. It was observed that as the plate warmed, each "finger" of the cut sheet independently recovered back to its unbent shape as the temperature of the plate reached its transition temperature.

"We are very excited about this new approach to preparing shape memory polymers, which should enable new devices with complex mechanical articulations," says Mather. "The project demonstrated how enthusiastic and persistent undergraduate researchers could contribute substantively, even in the throes of their busy course schedules."

There are numerous applications opportunities for Mather's functionally graded SMPs, from low-cost temperature labels that could measure temperatures in areas that are not accessible by conventional methods or not amenable to continuous monitoring, to indirectly indicate sterilization completions, or for incorporation into product packaging (for shipping industry or food storage) to indicate the maximum temperature for a product exposure.

The LCS team of researchers led by Mather included graduate student Xiaofan Luo and undergraduate student Andrew DiOrio.

####

For more information, please click here

Contacts:
Ariel DuChene
(315) 443-2546

Copyright © Syracuse University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Harris & Harris Group Notes Announcements by Its Portfolio Companies During the Third Quarter of 2016 September 30th, 2016

INVECAS to Enable ASIC Designs for Tomorrows Intelligent Systems on GLOBALFOUNDRIES' FDX Technology: INVECAS to Collaborate with GLOBALFOUNDRIES to Provide IP and End-to-End ASIC Design Services on 22FDX and 12FDX Technologies September 30th, 2016

How to power up graphene implants without frying cells: New analysis finds way to safely conduct heat from graphene to biological tissues September 30th, 2016

Innovation in Nanotechnology is Focus of Symposium: Annual event brings international experts to Northwestern Oct. 6 September 29th, 2016

Possible Futures

Harris & Harris Group Notes Announcements by Its Portfolio Companies During the Third Quarter of 2016 September 30th, 2016

How to power up graphene implants without frying cells: New analysis finds way to safely conduct heat from graphene to biological tissues September 30th, 2016

Nanosensors could help determine tumors ability to remodel tissue: Measuring enzyme levels could help doctors select appropriate treatments September 29th, 2016

Crystalline Fault Lines Provide Pathway for Solar Cell Current: New tomographic AFM imaging technique reveals that microstructural defects, generally thought to be detrimental, actually improve conductivity in cadmium telluride solar cells September 26th, 2016

Academic/Education

PHENOMEN is a FET-Open Research Project aiming to lay the foundations a new information technology September 19th, 2016

AIM Photonics Announces Release of Process Design Kit (PDK) for Integrated Silicon Photonics Design August 25th, 2016

Nanotech Security Featured by Simon Fraser University: Company's Anti-Counterfeiting Technology Developed With the Help of University's 4D LABS Materials Research Institute August 21st, 2016

W.M. Keck Foundation awards Cal State LA a $375,000 research and education grant August 4th, 2016

Sensors

How to power up graphene implants without frying cells: New analysis finds way to safely conduct heat from graphene to biological tissues September 30th, 2016

Nanosensors could help determine tumors ability to remodel tissue: Measuring enzyme levels could help doctors select appropriate treatments September 29th, 2016

Cambrios at CEATEC - Japan 2016 September 29th, 2016

Leti and Taiwanese Tech Organizations Sponsoring Workshop in Taipei on MEMS, IoT, Smart Lighting Applications, System Reliability & Security September 28th, 2016

Announcements

Harris & Harris Group Notes Announcements by Its Portfolio Companies During the Third Quarter of 2016 September 30th, 2016

INVECAS to Enable ASIC Designs for Tomorrows Intelligent Systems on GLOBALFOUNDRIES' FDX Technology: INVECAS to Collaborate with GLOBALFOUNDRIES to Provide IP and End-to-End ASIC Design Services on 22FDX and 12FDX Technologies September 30th, 2016

How to power up graphene implants without frying cells: New analysis finds way to safely conduct heat from graphene to biological tissues September 30th, 2016

Innovation in Nanotechnology is Focus of Symposium: Annual event brings international experts to Northwestern Oct. 6 September 29th, 2016

Food/Agriculture/Supplements

UNAM develops successful nano edible coating which increases life food September 27th, 2016

Speedy bacteria detector could help prevent foodborne illnesses September 21st, 2016

Lab team spins ginger into nanoparticles to heal inflammatory bowel disease August 19th, 2016

The NanoWizard AFM from JPK is applied for interdisciplinary research at the University of South Australia for applications including smart wound healing and how plants can protect themselves from toxins July 26th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic