Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Team develops functionally graded shape memory polymers

Abstract:
A team led by Patrick T. Mather, director of Syracuse Biomaterials Institute (SBI) and Milton and Ann Stevenson professor of biomedical and chemical engineering in Syracuse University's L.C. Smith College of Engineering and Computer Science (LCS), has succeeded in applying the concept of functionally graded materials (FGMs) to shape memory polymers (SMPs).

By Ariel DuChene

Team develops functionally graded shape memory polymers

Syracuse, NY | Posted on January 7th, 2011

SMPs are a class of "smart" materials that can switch between two shapes, from a fixed (temporary) shape to a predetermined permanent shape. Shape memory polymers function as actuators, by first forming a heated article into a temporary shape and cooling. Then, by using a second stimulus (i.e. heat), the article can spring back to its original shape.

To date, SMPs have been limited to two-way and three-way shape configurations. Mather has successfully built a process where sections of one shape memory polymer independently react to different temperature stimuli. This work has been highlighted on the cover of the January 2011 issue of Soft Matter, the leading journal in the field of soft matter research.

Functionally graded materials are defined as synthetic materials where the composition, microstructure and other properties differ along sections of the material. The goal of Mather's research was to apply this theory to SMPs and create a material that could be fixed and recovered in one section without impacting the response of the other sections.

Mather created a temperature gradient plate by applying heat at one end and using a cooling unit at the other end. The actual temperature gradient was verified by measuring different positions along the plate. The SMP was cured on this plate to set the different transition temperatures.

Mather first tested the graded SMP by using micro-indention on the surface and then heating the polymer. When heated, each indentation recovered to the original smooth surface as each one's transition temperature was reached along the surface.

The second test involved cutting the SMP and bending back the cut sections. This SMP was placed on a Pelletier plate that uniformly heated the material. It was observed that as the plate warmed, each "finger" of the cut sheet independently recovered back to its unbent shape as the temperature of the plate reached its transition temperature.

"We are very excited about this new approach to preparing shape memory polymers, which should enable new devices with complex mechanical articulations," says Mather. "The project demonstrated how enthusiastic and persistent undergraduate researchers could contribute substantively, even in the throes of their busy course schedules."

There are numerous applications opportunities for Mather's functionally graded SMPs, from low-cost temperature labels that could measure temperatures in areas that are not accessible by conventional methods or not amenable to continuous monitoring, to indirectly indicate sterilization completions, or for incorporation into product packaging (for shipping industry or food storage) to indicate the maximum temperature for a product exposure.

The LCS team of researchers led by Mather included graduate student Xiaofan Luo and undergraduate student Andrew DiOrio.

####

For more information, please click here

Contacts:
Ariel DuChene
(315) 443-2546

Copyright © Syracuse University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers find the 'key' to quantum network solution May 25th, 2015

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Engineering Phase Changes in Nanoparticle Arrays: Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials May 25th, 2015

Possible Futures

Simulations predict flat liquid May 21st, 2015

Nature inspires first artificial molecular pump: Simple design mimics pumping mechanism of life-sustaining proteins found in living cells May 19th, 2015

NNCO and Museum of Science Fiction to Collaborate on Nanotechnology and 3D Printing Panels at Awesome Con May 19th, 2015

Quantum 'gruyres' for spintronics of the future: Topological insulators become a little less 'elusive' May 12th, 2015

Academic/Education

SUNY Poly CNSE and NIOSH Launch Federal Nano Health and Safety Consortium: May 20th, 2015

New JEOL E-Beam Lithography System to Enhance Quantum NanoFab Capabilities May 6th, 2015

FEI Partners With the George Washington University to Equip New Science & Engineering Hall: Suite of new high-performance microscopes will be used for cutting-edge experiments at GWs new research facility April 29th, 2015

Renishaw Raman systems used to study 2D materials at Boston University, Massachusetts, USA. April 28th, 2015

Sensors

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Record high sensitive Graphene Hall sensors May 21st, 2015

Graphene enables tunable microwave antenna May 15th, 2015

Janusz Bryzek Joins MEMS Industry Group to Lead New TSensors Division - New Division will Focus on Accelerating Development of Emerging Ultra-high Volume Sensors Supporting Abundance, mHealth and IoT May 14th, 2015

Announcements

Researchers find the 'key' to quantum network solution May 25th, 2015

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Engineering Phase Changes in Nanoparticle Arrays: Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials May 25th, 2015

Food/Agriculture/Supplements

Supercomputer unlocks secrets of plant cells to pave the way for more resilient crops: IBM partners with University of Melbourne and UQ May 21st, 2015

QuantumSphere Announces Production-Scale Validation of Nano Iron Catalysts for Multi-Billion Dollar Ammonia Industry: Significant Improvement in Ammonia Production for Agricultural Fertilizer, Global Food Crops May 7th, 2015

Nanoparticles in consumer products can significantly alter normal gut microbiome May 4th, 2015

Research seeks alternatives for reducing bacteria in fresh produce using nanoengineering April 29th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project