Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Graphene grains make atom-thick patchwork 'quilts'

Another graphene sheet with different lattice orientations. Credit Muller Lab.
Another graphene sheet with different lattice orientations. Credit Muller Lab.

Abstract:
Cornell scientists find their electrical and mechanical properties

Graphene grains make atom-thick patchwork 'quilts'

Ithaca, NY | Posted on January 6th, 2011

Artistry from science: Cornell University researchers have unveiled striking, atomic-resolution details of what graphene "quilts" look like at the boundaries between patches, and have uncovered key insights into graphene's electrical and mechanical properties. (Nature, Jan. 5, 2010.)

Researchers focused on graphene - a one atom-thick sheet of carbon atoms bonded in a crystal lattice like a honeycomb or chicken wire - because of its electrical properties and potential to improve everything from solar cells to cell phone screens.

But graphene doesn't grow in perfect sheets. Rather, it develops in pieces that resemble patchwork quilts, where the honeycomb lattice meets up imperfectly. These "patches" meet at grain boundaries, and scientists had wondered whether these boundaries would allow the special properties of a perfect graphene crystal to transfer to the much larger quilt-like structures.

To study the material, the researchers grew graphene membranes on a copper substrate (a method devised by another group) but then conceived a novel way to peel them off as free-standing, atom-thick films.

Then with diffraction imaging electron microscopy, they imaged the graphene by seeing how electrons bounced off at certain angles, and using a color to represent that angle. By overlaying different colors according to how the electrons bounced, they created an easy, efficient method of imaging the graphene grain boundaries according to their orientation. And as a bonus, their pictures took an artistic turn, reminding the scientists of patchwork quilts.

"You don't want to look at the whole quilt by counting each thread. You want to stand back and see what it looks like on the bed. And so we developed a method that filters out the crystal information in a way that you don't have to count every atom," said David Muller, professor of applied and engineering physics and co-director of the Kavli Institute at Cornell for Nanoscale Science.

Muller conducted the work with Paul McEuen, professor of physics and director of the Kavli Institute, and Kavli member Jiwoong Park, assistant professor of chemistry and chemical biology.

Further analysis revealed that growing larger grains (bigger patches) didn't improve the electrical conductivity of the graphene, as was previously thought by materials scientists. Rather, it is impurities that sneak into the sheets that make the electrical properties fluctuate. This insight will lead scientists closer to the best ways to grow and use graphene.

The work was supported by the National Science Foundation through the Cornell Center for Materials Research and the Nanoscale Science and Engineering Initiative. The paper's other contributors were: Pinshane Huang, Carlos Ruiz-Vargas, Arend van der Zande, William Whitney, Mark Levendorf, Shivank Garg, JonathanAlden and Ye Zhu, all from Cornell; Joshua Kevek, Oregon State University and Caleb Hustedt, Brigham Young University.

####

For more information, please click here

Contacts:
Blaine Friedlander

607-254-8093

Copyright © Cornell University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Basque researchers turn light upside down February 23rd, 2018

Stiffness matters February 23rd, 2018

Imaging individual flexible DNA 'building blocks' in 3-D: Berkeley Lab researchers generate first images of 129 DNA structures February 22nd, 2018

'Memtransistor' brings world closer to brain-like computing: Combined memristor and transistor can process information and store memory with one device February 22nd, 2018

Display technology/LEDs/SS Lighting/OLEDs

Stiffness matters February 23rd, 2018

Govt.-Legislation/Regulation/Funding/Policy

Imaging individual flexible DNA 'building blocks' in 3-D: Berkeley Lab researchers generate first images of 129 DNA structures February 22nd, 2018

'Memtransistor' brings world closer to brain-like computing: Combined memristor and transistor can process information and store memory with one device February 22nd, 2018

Arrowhead Receives Regulatory Clearance to Begin Phase 1 Study of ARO-AAT for Treatment of Alpha-1 Liver Disease February 22nd, 2018

Computers aid discovery of new, inexpensive material to make LEDs with high color quality February 20th, 2018

Possible Futures

Basque researchers turn light upside down February 23rd, 2018

Stiffness matters February 23rd, 2018

Developing reliable quantum computers February 22nd, 2018

Imaging individual flexible DNA 'building blocks' in 3-D: Berkeley Lab researchers generate first images of 129 DNA structures February 22nd, 2018

Academic/Education

Luleĺ University of Technology is using the Deben CT5000TEC stage to perform x-ray microtomography experiments with the ZEISS Xradia 510 Versa to understand deformation and strain inside inhomogeneous materials November 7th, 2017

Park Systems Announces the Grand Opening of the Park NanoScience Center at SUNY Polytechnic Institute November 3rd, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Nanotubes/Buckyballs/Fullerenes/Nanorods

Nanotube fibers in a jiffy: Rice University lab makes short nanotube samples by hand to dramatically cut production time January 11th, 2018

Touchy nanotubes work better when clean: Rice, Swansea scientists show that decontaminating nanotubes can simplify nanoscale devices January 4th, 2018

Paving the way for a non-electric battery to store solar energy: UMass Amherst scientists say a polymer chain organized like a string of Christmas lights assists energy storage December 22nd, 2017

Nanotubes go with the flow to penetrate brain tissue: Rice University scientists, engineers develop microfluidic devices, microelectrodes for gentle implantation December 19th, 2017

Announcements

Basque researchers turn light upside down February 23rd, 2018

Stiffness matters February 23rd, 2018

Histology in 3-D: New staining method enables Nano-CT imaging of tissue samples February 22nd, 2018

Developing reliable quantum computers February 22nd, 2018

Energy

Round-the-clock power from smart bowties February 5th, 2018

Silk fibers could be high-tech ‘natural metamaterials’ January 31st, 2018

A simple new approach to plastic solar cells: Osaka University researchers intelligently design new highly efficient organic solar cells based on amorphous electronic materials with potential for easy printing January 28th, 2018

Nature paper by Schlumberger researchers used photothermal based nanoscale IR spectroscopy to analyze heterogeneous process of petroleum generation January 23rd, 2018

Research partnerships

Basque researchers turn light upside down February 23rd, 2018

Computers aid discovery of new, inexpensive material to make LEDs with high color quality February 20th, 2018

Rutgers-Led Innovation Could Spur Faster, Cheaper, Nano-Based Manufacturing: Scalable and cost-effective manufacturing of thin film devices February 14th, 2018

Understanding brain functions using upconversion nanoparticles: Researchers can now send light deep into the brain to study neural activities February 14th, 2018

Solar/Photovoltaic

A simple new approach to plastic solar cells: Osaka University researchers intelligently design new highly efficient organic solar cells based on amorphous electronic materials with potential for easy printing January 28th, 2018

Tweaking quantum dots powers-up double-pane solar windows: Engineered quantum dots could bring down the cost of solar electricity January 2nd, 2018

Record high photoconductivity for new metal-organic framework material December 15th, 2017

Inorganic-organic halide perovskites for new photovoltaic technology November 6th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project