Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Purdue, NIST working on breathalyzers for medical diagnostics

This image shows a new type of sensor for an advanced breath-analysis technology that rapidly diagnoses patients by detecting "biomarkers" in a person's respiration in real time. Researchers used a template made of micron-size polymer particles and coated them with much smaller metal oxide nanoparticles. Using nanoparticle-coated microparticles instead of a flat surface allows researchers to increase the porosity of the sensor films, increasing the "active sensing surface area" to improve sensitivity. (Purdue University and NIST)
This image shows a new type of sensor for an advanced breath-analysis technology that rapidly diagnoses patients by detecting "biomarkers" in a person's respiration in real time. Researchers used a template made of micron-size polymer particles and coated them with much smaller metal oxide nanoparticles. Using nanoparticle-coated microparticles instead of a flat surface allows researchers to increase the porosity of the sensor films, increasing the "active sensing surface area" to improve sensitivity. (Purdue University and NIST)

Abstract:
Researchers have overcome a fundamental obstacle in developing breath-analysis technology to rapidly diagnose patients by detecting chemical compounds called "biomarkers" in a person's respiration in real time.

Purdue, NIST working on breathalyzers for medical diagnostics

West Lafayette, IN | Posted on January 3rd, 2011

The researchers demonstrated their approach is capable of rapidly detecting biomarkers in the parts per billion to parts per million range, at least 100 times better than previous breath-analysis technologies, said Carlos Martinez, an assistant professor of materials engineering at Purdue who is working with researchers at the National Institute of Standards and Technology.

"People have been working in this area for about 30 years but have not been able to detect low enough concentrations in real time," he said. "We solved that problem with the materials we developed, and we are now focusing on how to be very specific, how to distinguish particular biomarkers."

The technology works by detecting changes in electrical resistance or conductance as gases pass over sensors built on top of "microhotplates," tiny heating devices on electronic chips. Detecting biomarkers provides a record of a patient's health profile, indicating the possible presence of cancer and other diseases.

"We are talking about creating an inexpensive, rapid way of collecting diagnostic information about a patient," Martinez said. "It might say, 'there is a certain percentage that you are metabolizing a specific compound indicative of this type of cancer,' and then additional, more complex tests could be conducted to confirm the diagnosis."

The researchers used the technology to detect acetone, a biomarker for diabetes, with a sensitivity in the parts per billion range in a gas mimicking a person's breath.

Findings were detailed in a research paper that appeared earlier this year in the IEEE Sensors Journal, published by the Institute of Electrical and Electronics Engineers' IEEE Sensors Council. The paper was co-authored by Martinez and NIST researchers Steve Semancik, lead author Kurt D. Benkstein, Baranidharan Raman and Christopher B. Montgomery.

The researchers used a template made of micron-size polymer particles and coated them with far smaller metal oxide nanoparticles. Using nanoparticle-coated microparticles instead of a flat surface allows researchers to increase the porosity of the sensor films, increasing the "active sensing surface area" to improve sensitivity.

A droplet of the nanoparticle-coated polymer microparticles was deposited on each microhotplate, which are about 100 microns square and contain electrodes shaped like meshing fingers. The droplet dries and then the electrodes are heated up, burning off the polymer and leaving a porous metal-oxide film, creating a sensor.

"It's very porous and very sensitive," Martinez said. "We showed that this can work in real time, using a simulated breath into the device."

Gases passing over the device permeate the film and change its electrical properties depending on the particular biomarkers contained in the gas.

Such breathalyzers are likely a decade or longer away from being realized, in part because precise standards have not yet been developed to manufacture devices based on the approach, Martinez said.

"However, the fact that we were able to do this in real time is a big step in the right direction," he said.

####

For more information, please click here

Contacts:
Writer:
Emil Venere
765-494-4709


Source:
Carlos Martinez
765-494-3271

Copyright © Purdue University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

Iranian Scientists Use Magnetic Field to Transfer Anticancer Drug to Tumor Tissue May 24th, 2015

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Possible Futures

Simulations predict flat liquid May 21st, 2015

Nature inspires first artificial molecular pump: Simple design mimics pumping mechanism of life-sustaining proteins found in living cells May 19th, 2015

NNCO and Museum of Science Fiction to Collaborate on Nanotechnology and 3D Printing Panels at Awesome Con May 19th, 2015

Quantum 'gruyères' for spintronics of the future: Topological insulators become a little less 'elusive' May 12th, 2015

Academic/Education

SUNY Poly CNSE and NIOSH Launch Federal Nano Health and Safety Consortium: May 20th, 2015

New JEOL E-Beam Lithography System to Enhance Quantum NanoFab Capabilities May 6th, 2015

FEI Partners With the George Washington University to Equip New Science & Engineering Hall: Suite of new high-performance microscopes will be used for cutting-edge experiments at GW’s new research facility April 29th, 2015

Renishaw Raman systems used to study 2D materials at Boston University, Massachusetts, USA. April 28th, 2015

Nanomedicine

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

Iranian Scientists Use Magnetic Field to Transfer Anticancer Drug to Tumor Tissue May 24th, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Researchers develop new way to manufacture nanofibers May 21st, 2015

Announcements

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

Iranian Scientists Use Magnetic Field to Transfer Anticancer Drug to Tumor Tissue May 24th, 2015

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Nanobiotechnology

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Supercomputer unlocks secrets of plant cells to pave the way for more resilient crops: IBM partners with University of Melbourne and UQ May 21st, 2015

Researchers develop new way to manufacture nanofibers May 21st, 2015

Nature inspires first artificial molecular pump: Simple design mimics pumping mechanism of life-sustaining proteins found in living cells May 19th, 2015

Research partnerships

Supercomputer unlocks secrets of plant cells to pave the way for more resilient crops: IBM partners with University of Melbourne and UQ May 21st, 2015

Taking control of light emission: Researchers find a way of tuning light waves by pairing 2 exotic 2-D materials May 20th, 2015

Efficiency record for black silicon solar cells jumps to 22.1 percent: Aalto University's researchers improved their previous record by over 3 absolute percents in cooperation with Universitat Politècnica de Catalunya May 18th, 2015

Organic nanoparticles, more lethal to tumors: Carbon-based nanoparticles could be used to sensitize cancerous tumors to proton radiotherapy and induce more focused destruction of cancer cells, a new study shows May 18th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project