Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > UH Biochemist Works to Revolutionize Ovarian Cancer Treatment

A strong proponent of student success, Preethi Gunaratne is pictured with one of the many students from her lab. Here, she points out the Illumina Genome Analyzer, a key piece of equipment used in her research, to graduate student Ashley Benham. (Photo by Thomas Campbell)
A strong proponent of student success, Preethi Gunaratne is pictured with one of the many students from her lab. Here, she points out the Illumina Genome Analyzer, a key piece of equipment used in her research, to graduate student Ashley Benham. (Photo by Thomas Campbell)

Abstract:
Preethi Gunaratne Wins Key Grants to Unleash Body's Natural Cancer-fighting Agents

UH Biochemist Works to Revolutionize Ovarian Cancer Treatment

Houston, TX | Posted on December 22nd, 2010

The day when an ovarian cancer patient can treat her tumor with a single, painless pill instead of a toxic drug cocktail is the ultimate goal of the pioneering research of a University of Houston (UH) scientist.

Preethi Gunaratne, assistant professor in the department of biology and biochemistry, is studying a class of tiny genetic molecules known as microRNAs and pinpointing those that could unleash the body's natural cancer-fighting agents. Additionally, she is developing a novel method to effectively deliver this treatment to the targeted cells by using an unusual carrier - nanoparticles of gold - through the work of Lalithya Jayarathne, a postdoctoral researcher in Gunaratne's lab.

Gunaratne's potentially groundbreaking work in ovarian cancer has gained exceptional notice and momentum this year with a series of high-profile research grants. In October, her ovarian cancer project was awarded a $200,000 High Impact/High Risk grant from the Cancer Prevention and Research Institute of Texas (CPRIT), which oversees the state's billion-dollar war on cancer. In November, she was approved for a $250,000 grant from Houston's Cullen Foundation. Earlier this year, she was chosen a beneficiary of the Baylor College of Medicine Partnership Fund.

Each year, the Baylor partnership undertakes a major fundraising campaign for a specific health project. For 2010-11, the partnership is raising money to fund the collaborative ovarian cancer project of Gunaratne and Baylor researchers Matthew Anderson and Martin Matzuk.

All this promising research has its origins in a revolution in genetic science that began just a few years ago. Attention has long centered on nucleic acids known as DNA, with little consideration given to its cousin RNA or to microRNAs, which were considered "genetic junk" that played no significant role in the human genome, Gunaratne said.

That began to change earlier this decade as scientists discovered that microRNAs might actually be the hidden regulators that control the 30,000 genes in the human body by silencing gene expression. Gunaratne has been at the vanguard of this development. With its 2008 acquisition of a $1 million genome sequencer device - the Illumina Genome Analyzer - UH instantly became a major player in this cutting-edge research. This state-of-the-art machine can rapidly deconstruct and analyze millions of pages worth of genetic data and allowed Gunaratne's lab to sequence hundreds of normal and diseased tissue samples.

Gunaratne set her sights on a variety of cancers, including ovarian tumors, pediatric neuroblastoma and multiple myeloma. Using the sequencer in collaboration with Baylor, Texas Children's Cancer Center and the Lurie Cancer Center at Northwestern University, her team created a unique database documenting genome-wide patters of microRNA and gene expression across an array of human tissues and cancers. The ultimate goal is to connect specific microRNAs with the genes they regulate, individualized to attack specific genomes.

From this database, Gunaratne's team was able to pinpoint a handful of microRNAs in the human body that can significantly or completely suppress the growth of cancer cells. One in particular, miR-31, discovered by Baylor collaborators and Gunaratne, shows promise as a potent tumor suppressor in ovarian cancer, glioblastoma, osteosarcoma and prostate cancer.

They discovered that miR-31 can specifically target and kill cancer cells that are deficient in p53, a crucial gene that guards the integrity of the genome and prevents cancer. More than half of all cancers and 90 percent of papillary serous tumors - the most common type of malignant ovarian cancer - are p53-deficient.

In cell cultures miR-31 suppressed and killed tumor cells deficient in p53, while sparing cells with a normal p53 gene. Since all non-cancerous cells in the body would be resistant to miR-31, it can fight tumors without the side effects associated with chemotherapy.

"Delivering these microRNAs into human patients is a much trickier proposition than working on cell cultures and has never been done," Gunaratne said. "Other types of gene therapy have been delivered with modified viruses in clinical trials, but ongoing safety concerns will likely prevent its widespread use."

However, Gunaratne believes gold, which is biocompatible and easily functionalized to carry hundreds of microRNAs on the surface, can act as an effective carrier of genetic molecules. In lab tests, gold nanoparticles containing miR-31 penetrated 90 percent of targeted cells within 20 minutes, killing cancer cells three times faster than microRNAs delivered through lentiviruses, which are traditionally used in carrying gene-based treatments to diseased cells.

The next step is to test these microRNA-conjugated gold particles on tumors in mice to see if they can be delivered orally or through injection to shrink the tumors. If all goes as planned, this potentially revolutionary ovarian cancer treatment could be ready for Phase One clinical trials in humans at the end of the two-year CPRIT grant, Gunaratne said.

Ovarian cancer is the fifth deadliest cancer among women, with about 15,000 deaths annually in the United States. Thus far, in cancer treatment generally, genetic markers have been helpful in assessing cancer patients' risk and channeling them into the most effective treatment options. If scientists like Gunaratne are successful, doctors will go beyond just observing and reacting to a cancer patient's gene expression to actually changing it, activating the body's natural tumor suppressants. This could make chemotherapy a thing of the past.

"Although ovarian tumors are the focus of this project, our microRNA research is applicable to other cancers and diseases, too," Gunaratne said. "Because a single microRNA can regulate hundreds of genes across diverse signaling pathways, they provide an especially promising way to control the patterns of gene expression that cause disease."

Gunaratne also is a co-investigator with Baylor researchers on two other CPRIT grants announced in October, totaling $2.5 million. In one they will test siRNA-conjugated gold particles as an anti-cancer agent with Baylor's Dr. Larry Donehower, and in the other they will use next-generation sequencing to look at epigenetic signals in malignant blood-related cancers with Dr. Margaret Goodell.

This most recent round of CPRIT grant awards marks the first time UH has received a research grant from CPRIT. Previous awards were for training graduate students and for raising cancer awareness.

"All these awards, CPRIT included, underscore UH's growing role in biomedical research and demonstrate we can compete with other research powerhouses both locally and nationally," Gunaratne said.

####

About University of Houston
The University of Houston is a comprehensive national research institution serving the globally competitive Houston and Gulf Coast Region by providing world-class faculty, experiential learning and strategic industry partnerships. UH serves more than 38,500 students in the nation’s fourth-largest city, located in the most ethnically and culturally diverse region of the country.

About the College of Natural Sciences and Mathematics
The UH College of Natural Sciences and Mathematics, with 181 ranked faculty and approximately 4,500 students, offers bachelor’s, master’s and doctoral degrees in the natural sciences, computational sciences and mathematics. Faculty members in the departments of biology and biochemistry, chemistry, computer science, earth and atmospheric sciences, mathematics and physics conduct internationally recognized research in collaboration with industry, Texas Medical Center institutions, NASA and others worldwide.

For more information, please click here

Contacts:
Lisa K. Merkl
University of Houston
Office of University Communication
Senior Science Writer & Media Relations Rep
129 E. Cullen Building
Houston, TX 77204-5017
office: 713-743-8192
cell: 713-213-5279
fax: 713-743-8199

Copyright © University of Houston

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

CWRU researchers efficiently charge a lithium-ion battery with solar cell: Coupling with perovskite solar cell holds potential for cleaner cars and more August 27th, 2015

Successful boron-doping of graphene nanoribbon August 27th, 2015

Nanolab Technologies LEAPS Forward with High-Performance Analysis Services to the World: Nanolab Orders Advanced Local Electrode Atom Probe (LEAP®) Microscope from CAMECA Unit of AMETEK Materials Analysis Division August 27th, 2015

National Space Society Welcomes Janet Ivey As New NSS Governor: Janet Ivey of Janet's Planet is NOW IN ORBIT as a member of the Board of Governors of the National Space Society August 27th, 2015

Possible Futures

Sediment dwelling creatures at risk from nanoparticles in common household products August 13th, 2015

Harris & Harris Group Reports Financial Statements as of June 30, 2015, and Announces a Stock Repurchase Program August 10th, 2015

Molecular trick alters rules of attraction for non-magnetic metals August 5th, 2015

Global Carbon Nanotubes Industry 2015: Acute Market Reports August 4th, 2015

Academic/Education

Announcing Oxford Instruments and School of Physics signing a Memorandum of Understanding August 26th, 2015

Kwansei Gakuin University in Hyogo, Japan, uses Raman microscopy to study crystallographic defects in silicon carbide wafers August 25th, 2015

JPK reports on the use of a NanoWizard® AFM-SECM system at the Université Paris Diderot looking at nanoscale biostructures August 18th, 2015

Rice, Penn State open center for 2-D coatings: National Science Foundation selects universities to develop atom-thin materials with industry partners August 13th, 2015

Nanomedicine

These microscopic fish are 3-D-printed to do more than swim: Researchers demonstrate a novel method to build microscopic robots with complex shapes and functionalities August 26th, 2015

Glitter from silver lights up Alzheimer's dark secrets August 25th, 2015

Cervical cancer detection goes portable August 25th, 2015

Antibacterial Nanocomposite Prevents Transmission of Infectious Diseases August 24th, 2015

Announcements

CWRU researchers efficiently charge a lithium-ion battery with solar cell: Coupling with perovskite solar cell holds potential for cleaner cars and more August 27th, 2015

Successful boron-doping of graphene nanoribbon August 27th, 2015

Nanolab Technologies LEAPS Forward with High-Performance Analysis Services to the World: Nanolab Orders Advanced Local Electrode Atom Probe (LEAP®) Microscope from CAMECA Unit of AMETEK Materials Analysis Division August 27th, 2015

National Space Society Welcomes Janet Ivey As New NSS Governor: Janet Ivey of Janet's Planet is NOW IN ORBIT as a member of the Board of Governors of the National Space Society August 27th, 2015

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

50 Years of Scanning Electron Microscopy from ZEISS: ZEISS celebrates the birth of the first commercial scanning electron microscope in 1965 August 26th, 2015

How UEA research could help build computers from DNA August 19th, 2015

'Quantum dot' technology may help light the future August 19th, 2015

Exercise-induced hormone irisin is not a 'myth' August 14th, 2015

Nanobiotechnology

Nanotechnology that will impact the Security & Defense sectors to be discussed at NanoSD2015 conference August 25th, 2015

Louisiana Tech University researchers discover synthesis of a new nanomaterial: Interdisciplinary team creates biocomposite for first time using physiological conditions August 24th, 2015

How UEA research could help build computers from DNA August 19th, 2015

Biophysics: Formation of swarms in nanosystems August 18th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic