Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Nanoparticles Deliver One-Two Therapeutic Punch to Kill Tumor Cells

Polymer-caged nanobins (PCNs) that can undergo Cu(I)-catalyzed click reactions enable the combination of GdIII magnetic resonance imaging (MRI) contrast agents and an anticancer drug (gemcitabine, GMC) into a single theranostic platform (see picture). The resulting gadolinium(III)-conjugated, GMC-loaded PCNs (GdIII–PCNGMC) exhibit a significantly superior performance in r1 relaxivity, drug uptake, and pH-sensitive drug release. Credit Angewandte Chemie International Edition
Polymer-caged nanobins (PCNs) that can undergo Cu(I)-catalyzed click reactions enable the combination of GdIII magnetic resonance imaging (MRI) contrast agents and an anticancer drug (gemcitabine, GMC) into a single theranostic platform (see picture). The resulting gadolinium(III)-conjugated, GMC-loaded PCNs (GdIII–PCNGMC) exhibit a significantly superior performance in r1 relaxivity, drug uptake, and pH-sensitive drug release. Credit Angewandte Chemie International Edition

Abstract:
The standard approach to cancer therapy today is to mix and match chemotherapy drugs in order to attack tumors in multiple ways. Now, two separate teams of investigators have demonstrated that using nanoparticles to deliver multiple drugs simultaneously can produce a synergistic effect that boosts the cell-killing ability of both drugs.

Nanoparticles Deliver One-Two Therapeutic Punch to Kill Tumor Cells

Bethesda, MD | Posted on December 17th, 2010

In one study, a team of investigators at Northwestern University has shown that they can combine two powerful but extremely toxic anticancer agents - cisplatin and doxorubicin - in one polymer nanoparticle, producing a substantial boost in their ability of the combination to destroy tumors. In addition, the two-in-one nanoparticle reduces the amount of both drugs needed to kill cancer cells, which presumably would reduce the toxic side effects associated with these drugs.

SonBinh Nguyen and Thomas O'Halloran led this study, which was published in the Journal of the American Chemical Society. Dr. O'Halloran is the co-principal investigator of one of 12 Cancer Nanotechnology Platform Partnerships funded by the National Cancer Institute Alliance for Nanotechnology in Cancer. He is also a member of the Northwestern University Center for Cancer Nanotechnology Excellence (CCNE), which is also part of the Alliance for Nanotechnology in Cancer.

Though originally designed to carry arsenic trioxide to solid tumors, the nanoparticles used in this study are proving to be quite versatile in their ability to ferry a wide range of cargos to malignancies. In this study, the investigators wanted to see if delivering two drugs in one nanoparticle offered any advantages of delivering them without the nanoparticle or in separate nanoparticles. The nanoparticles, which the researchers call nanobins, are made by encasing a liposome inside a pH-responsive polymer cage. In this case, doxorubicin is entrapped within the liposome's core, while cisplatin was entrapped in the polymer cage.

In an initial set of experiments, the investigators determined that a 5 to 1 ratio of cisplatin to doxorubicin was the most effective at treating ovarian tumors when the two drugs were combined in the same nanoparticle. When the two drugs were administered at this ratio but with each in its own nanoparticle, the combination was not only less effective at killing malignant cells, but the two drugs appeared to be interfering with each other, a phenomenon often observed in clinical practice. Administering the two drugs in the same nanoparticle ensures that the drugs are hitting their intracellular targets at the same time, which is what likely leads to the synergism observed in this study.

Meanwhile, Mansoor Amiji and Zhenfeng Duan, co-principle investigators of the Cancer Nanotechnology Platform Partnership at Northeastern University, have shown that a different type of polymer nanoparticle can also deliver two anticancer agents simultaneously and as a result can kill cancer cells that have become resistant to drug therapy. In this case, the researchers synthesized biocompatible polymer nanoparticles that entrapped paclitaxel and lonidamine and that targeted the epidermal growth factor receptor (EGFR) that is overexpressed on highly aggressive tumors. When added to tumor cells growing in culture, the nanoparticle containing both drugs was far more effective at killing the drug-resistance cells than when the two drugs were co-administered in separate nanoparticles. The investigators reported their findings in the journal Molecular Pharmaceutics.

In a separate set of experiments, the results of which were published in the journal Angewandte Chemie International Edition, Drs. Nguyen and O'Halloran, joined by Thomas Meade, another member of the Northwestern CCNE, demonstrated that nanobins can also co-deliver a therapeutic and magnetic resonance imaging agent to tumors. In this study, the researchers loaded the anticancer agent gemcitabine into the nanobin's core and added a gadolinium magnetic resonance contrast agent to the nanobin's surface. When added to mouse tumor cells, the nanobins were taken up rapidly and the nanobins were clearly visible in magnetic resonance images. In addition, the nanoparticles released their gemcitabine payload once the nanobins were taken up by the cultured cells.

This work, which is detailed in three papers, was supported in part by the NCI Alliance for Nanotechnology in Cancer, a comprehensive initiative designed to accelerate the application of nanotechnology to the prevention, diagnosis, and treatment of cancer. Abstracts of the papers are available at the journals' websites.

Journal of the American Chemical Society paper -
View abstract here pubs.acs.org/doi/abs/10.1021/ja107333g

Molecular Pharmaceutics paper -
View abstract here pubs.acs.org/doi/abs/10.1021/mp1002653

Angewandte Chemie International Edition paper -
View abstract here tinyurl.com/28yfmcv

####

About NCI Alliance for Nanotechnology in Cancer
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Copyright © NCI Alliance for Nanotechnology in Cancer

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Quantum manipulation power for quantum information processing gets a boost: Improving the efficiency of quantum heat engines involves reducing the number of photons in a cavity, ultimately impacting quantum manipulation power October 14th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Possible Futures

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Academic/Education

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Graduate Students from Across the Country Attend Hands-on NanoCamp: Prominent scientists Warren Oliver, Ph.D., and George Pharr, Ph.D., presented a weeklong NanoCamp for hand-picked graduate students across the United States July 26th, 2017

The Physics Department of Imperial College, London, uses the Quorum Q150T to deposit metals and ITO to make plasmonic sensors and electric contact pads July 13th, 2017

Nanomedicine

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Arrowhead Pharmaceuticals to Present Preclinical Data on ARO-AAT at The Liver Meeting(R) October 10th, 2017

Arrowhead to Present at Chardan Gene Therapy Conference October 3rd, 2017

'CRISPR-Gold' fixes Duchenne muscular dystrophy mutation in mice October 3rd, 2017

Announcements

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Nanobiotechnology

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Arrowhead Pharmaceuticals to Present Preclinical Data on ARO-AAT at The Liver Meeting(R) October 10th, 2017

Arrowhead to Present at Chardan Gene Therapy Conference October 3rd, 2017

'CRISPR-Gold' fixes Duchenne muscular dystrophy mutation in mice October 3rd, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project