Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Nanoparticles Deliver One-Two Therapeutic Punch to Kill Tumor Cells

Polymer-caged nanobins (PCNs) that can undergo Cu(I)-catalyzed click reactions enable the combination of GdIII magnetic resonance imaging (MRI) contrast agents and an anticancer drug (gemcitabine, GMC) into a single theranostic platform (see picture). The resulting gadolinium(III)-conjugated, GMC-loaded PCNs (GdIII–PCNGMC) exhibit a significantly superior performance in r1 relaxivity, drug uptake, and pH-sensitive drug release. Credit Angewandte Chemie International Edition
Polymer-caged nanobins (PCNs) that can undergo Cu(I)-catalyzed click reactions enable the combination of GdIII magnetic resonance imaging (MRI) contrast agents and an anticancer drug (gemcitabine, GMC) into a single theranostic platform (see picture). The resulting gadolinium(III)-conjugated, GMC-loaded PCNs (GdIII–PCNGMC) exhibit a significantly superior performance in r1 relaxivity, drug uptake, and pH-sensitive drug release. Credit Angewandte Chemie International Edition

Abstract:
The standard approach to cancer therapy today is to mix and match chemotherapy drugs in order to attack tumors in multiple ways. Now, two separate teams of investigators have demonstrated that using nanoparticles to deliver multiple drugs simultaneously can produce a synergistic effect that boosts the cell-killing ability of both drugs.

Nanoparticles Deliver One-Two Therapeutic Punch to Kill Tumor Cells

Bethesda, MD | Posted on December 17th, 2010

In one study, a team of investigators at Northwestern University has shown that they can combine two powerful but extremely toxic anticancer agents - cisplatin and doxorubicin - in one polymer nanoparticle, producing a substantial boost in their ability of the combination to destroy tumors. In addition, the two-in-one nanoparticle reduces the amount of both drugs needed to kill cancer cells, which presumably would reduce the toxic side effects associated with these drugs.

SonBinh Nguyen and Thomas O'Halloran led this study, which was published in the Journal of the American Chemical Society. Dr. O'Halloran is the co-principal investigator of one of 12 Cancer Nanotechnology Platform Partnerships funded by the National Cancer Institute Alliance for Nanotechnology in Cancer. He is also a member of the Northwestern University Center for Cancer Nanotechnology Excellence (CCNE), which is also part of the Alliance for Nanotechnology in Cancer.

Though originally designed to carry arsenic trioxide to solid tumors, the nanoparticles used in this study are proving to be quite versatile in their ability to ferry a wide range of cargos to malignancies. In this study, the investigators wanted to see if delivering two drugs in one nanoparticle offered any advantages of delivering them without the nanoparticle or in separate nanoparticles. The nanoparticles, which the researchers call nanobins, are made by encasing a liposome inside a pH-responsive polymer cage. In this case, doxorubicin is entrapped within the liposome's core, while cisplatin was entrapped in the polymer cage.

In an initial set of experiments, the investigators determined that a 5 to 1 ratio of cisplatin to doxorubicin was the most effective at treating ovarian tumors when the two drugs were combined in the same nanoparticle. When the two drugs were administered at this ratio but with each in its own nanoparticle, the combination was not only less effective at killing malignant cells, but the two drugs appeared to be interfering with each other, a phenomenon often observed in clinical practice. Administering the two drugs in the same nanoparticle ensures that the drugs are hitting their intracellular targets at the same time, which is what likely leads to the synergism observed in this study.

Meanwhile, Mansoor Amiji and Zhenfeng Duan, co-principle investigators of the Cancer Nanotechnology Platform Partnership at Northeastern University, have shown that a different type of polymer nanoparticle can also deliver two anticancer agents simultaneously and as a result can kill cancer cells that have become resistant to drug therapy. In this case, the researchers synthesized biocompatible polymer nanoparticles that entrapped paclitaxel and lonidamine and that targeted the epidermal growth factor receptor (EGFR) that is overexpressed on highly aggressive tumors. When added to tumor cells growing in culture, the nanoparticle containing both drugs was far more effective at killing the drug-resistance cells than when the two drugs were co-administered in separate nanoparticles. The investigators reported their findings in the journal Molecular Pharmaceutics.

In a separate set of experiments, the results of which were published in the journal Angewandte Chemie International Edition, Drs. Nguyen and O'Halloran, joined by Thomas Meade, another member of the Northwestern CCNE, demonstrated that nanobins can also co-deliver a therapeutic and magnetic resonance imaging agent to tumors. In this study, the researchers loaded the anticancer agent gemcitabine into the nanobin's core and added a gadolinium magnetic resonance contrast agent to the nanobin's surface. When added to mouse tumor cells, the nanobins were taken up rapidly and the nanobins were clearly visible in magnetic resonance images. In addition, the nanoparticles released their gemcitabine payload once the nanobins were taken up by the cultured cells.

This work, which is detailed in three papers, was supported in part by the NCI Alliance for Nanotechnology in Cancer, a comprehensive initiative designed to accelerate the application of nanotechnology to the prevention, diagnosis, and treatment of cancer. Abstracts of the papers are available at the journals' websites.

Journal of the American Chemical Society paper -
View abstract here pubs.acs.org/doi/abs/10.1021/ja107333g

Molecular Pharmaceutics paper -
View abstract here pubs.acs.org/doi/abs/10.1021/mp1002653

Angewandte Chemie International Edition paper -
View abstract here tinyurl.com/28yfmcv

####

About NCI Alliance for Nanotechnology in Cancer
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Copyright © NCI Alliance for Nanotechnology in Cancer

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Device invented at Johns Hopkins provides up-close look at cancer on the move: Microscopic view of metastasis could give insight about how to keep cancer in check October 31st, 2014

First Observation of Electronic Structure in Ag-Rh Alloy Nanoparticles Having Hydrogen Absorbing: Storage Property –Attempting to solve the mystery of why Ag-Rh alloy nanoparticles have a similar property to Pd– October 30th, 2014

Iranians Present Model to Predict Photocatalytic Process in Removal of Pollutants October 30th, 2014

Production of Biocompatible Polymers in Iran October 30th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Device invented at Johns Hopkins provides up-close look at cancer on the move: Microscopic view of metastasis could give insight about how to keep cancer in check October 31st, 2014

'Electronic skin' could improve early breast cancer detection October 29th, 2014

New solar power material converts 90 percent of captured light into heat: SunShot Project aims to make solar cost competitive October 29th, 2014

Tiny carbon nanotube pores make big impact October 29th, 2014

Possible Futures

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Superconducting circuits, simplified: New circuit design could unlock the power of experimental superconducting computer chips October 18th, 2014

Nanocoatings Market By Product Is Expected To Reach USD 8.17 Billion By 2020: Grand View Research, Inc. October 15th, 2014

Perpetuus Carbon Group Receives Independent Verification of its Production Capacity for Graphenes at 140 Tonnes per Annum: Perpetuus Becomes the First Manufacturer in the Sector to Allow Third Party Audit October 7th, 2014

Academic/Education

SUNY Polytechnic Institute Invites the Public to Attend its Popular Statewide 'NANOvember' Series of Outreach and Educational Events October 23rd, 2014

First Canada Excellence Research Chair gets $10 million from the federal government for oilsands research at the University of Calgary: Federal government announces prestigious research chair to study improving oil production efficiency October 19th, 2014

Raytheon, UMass Lowell open on-campus research institute: Industry leader’s researchers to collaborate with faculty, students to move key technologies forward through first-of-its-kind partnership October 11th, 2014

SUNY Colleges of Nanoscale Science and Engineering and National Institute for Occupational Safety and Health Announce Expanded Partnership October 2nd, 2014

Nanomedicine

Production of Biocompatible Polymers in Iran October 30th, 2014

Amorphous Coordination Polymer Particles as alternative to classical nanoplatforms for nanomedicine October 30th, 2014

'Electronic skin' could improve early breast cancer detection October 29th, 2014

Tiny carbon nanotube pores make big impact October 29th, 2014

Announcements

Device invented at Johns Hopkins provides up-close look at cancer on the move: Microscopic view of metastasis could give insight about how to keep cancer in check October 31st, 2014

First Observation of Electronic Structure in Ag-Rh Alloy Nanoparticles Having Hydrogen Absorbing: Storage Property –Attempting to solve the mystery of why Ag-Rh alloy nanoparticles have a similar property to Pd– October 30th, 2014

Iranians Present Model to Predict Photocatalytic Process in Removal of Pollutants October 30th, 2014

Production of Biocompatible Polymers in Iran October 30th, 2014

Nanobiotechnology

Tiny carbon nanotube pores make big impact October 29th, 2014

Molecular beacons shine light on how cells 'crawl' October 27th, 2014

Breakthrough in molecular electronics paves the way for DNA-based computer circuits in the future: DNA-based programmable circuits could be more sophisticated, cheaper and simpler to make October 27th, 2014

NYU Researchers Break Nano Barrier to Engineer the First Protein Microfiber October 23rd, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE