Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Tracking Therapeutic Nanoparticles that Target Breast Tumors

Credit Nano Letters
Credit Nano Letters

Abstract:
Researchers at Rice University, collaborating with investigators at the Baylor College of Medicine, have used two different types of imaging technologies to track the delivery of a therapeutic nanoparticle to breast tumors.

Tracking Therapeutic Nanoparticles that Target Breast Tumors

Bethesda, MD | Posted on December 17th, 2010

The results of this study, which appear in the journal Nano Letters, not only demonstrate the ability to create and track multimodal nanoparticles in the body, but also provide valuable information about how targeting agents impact the fate of complex nanoparticles in the body.

This work was led by Naomi Halas at Rice and Amit Joshi at Baylor. Dr. Halas is co-principal investigator of one of 12 Cancer Nanotechnology Platform Partnerships funded by the National Cancer Institute Alliance for Nanotechnology in Cancer. Dr. Joshi is a member of the Texas Center for Cancer Nanomedicine, one of nine Centers of Cancer Nanotechnology Excellence funded by the National Cancer Institute Alliance for Nanotechnology in Cancer.

The investigators conducted their studies using a gold nanoshell to which they added a magnetic iron oxide nanoparticles embedded in a thin layer of silicon dioxide, followed by a layer of a fluorescent molecule known as ICG and targeting antibody, and finally a layer of polyethylene glycol (PEG) to render the entire construct biocompatible. For targeting breast tumors, the researchers used an antibody that recognizes the HER2 surface protein found on some forms of breast cancer.

After injecting this nanoparticle into mice bearing human tumors that overexpress the HER2 protein, the researchers used both near-infrared imaging and magnetic resonance imaging to follow the particles for the next 72 hours. Tumor levels of the nanoparticle peaked at about 4 hours after injection. In contrast, there was little nanoparticle accumulation in tumors when injected into mice bearing tumors that do not overexpress the HER2 protein. The results obtained when the animals were imaged using magnetic resonance imaging differed in that tumor levels did not peak until 24 hours after injection. The researchers hypothesized that the two results differed because fluorescence imaging detects nanoparticles attached to the outer edge of the tumor while magnetic resonance imaging detects nanoparticles distributed throughout the tumor mass. The fact that it takes longer for nanoparticles to diffuse into the core of a tumor than to merely bind to its surface would explain the time discrepancy. Additional experiments confirmed that the nanoparticles remained intact throughout the experiment.

This work, which was supported in part by the National Cancer Institute, is detailed in a paper titled "Tracking of Multimodal Therapeutic Nanocomplexes Targeting Breast Cancer in Vivo." An abstract of this paper is available at the journal's website.

View abstract at pubs.acs.org/doi/abs/10.1021/nl102889y

####

For more information, please click here

Copyright © NCI Alliance for Nanotechnology in Cancer

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Leti to Demo 1st Wireless UNB Transceiver for ‘Massive Internet of Things’ at RFIC 2017 and IMS 2017: Leti Will also Present Three Papers & Two Workshops on 5G Communications IC Design, from RF to mm-Wave, During IMS 2017 and RFIC 2017 in Hawaii May 24th, 2017

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Govt.-Legislation/Regulation/Funding/Policy

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Stanford scientists use nanotechnology to boost the performance of key industrial catalyst May 18th, 2017

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

Possible Futures

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Leti Will Demo World’s-first WVGA 10-µm Pitch GaN Microdisplays for Augmented Reality Video at Display Week in Los Angles: Invited Paper also Will Present Leti’s Success with New Augmented Reality Technology That Reduces Pixel Pitch to Less than 5 Microns May 22nd, 2017

Academic/Education

MIT Energy Initiative awards 10 seed fund grants for early-stage energy research May 4th, 2017

Bar-Ilan University to set up quantum research center May 1st, 2017

California Research Alliance by BASF establishes more than 25 research projects in three years April 26th, 2017

SUNY Polytechnic Institute Announces Total of 172 Teams Selected to Compete in Solar in Your Community Challenge: Teams from 40 states, plus Washington, DC, 2 Territories, and 4 American Indian Reservations, Will Deploy Solar in Underserved Communities April 20th, 2017

Nanomedicine

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

The brighter side of twisted polymers: Conjugated polymers designed with a twist produce tiny, brightly fluorescent particles with broad applications May 16th, 2017

Announcements

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Leti to Demo 1st Wireless UNB Transceiver for ‘Massive Internet of Things’ at RFIC 2017 and IMS 2017: Leti Will also Present Three Papers & Two Workshops on 5G Communications IC Design, from RF to mm-Wave, During IMS 2017 and RFIC 2017 in Hawaii May 24th, 2017

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Nanobiotechnology

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

The brighter side of twisted polymers: Conjugated polymers designed with a twist produce tiny, brightly fluorescent particles with broad applications May 16th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project