Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Researchers pave the way for spin computers

Abstract:
A "Spin Ratchet", a new electronic structure for generating spin current, is demonstrated for the first time.

Researchers pave the way for spin computers

Bellaterra, España | Posted on December 16th, 2010

A research team from the Institut Català de Nanotecnologia (ICN), in Barcelona, has demonstrated a device that induces electron spin motion without net electric currents, a key step in developing the spin computers of the future. The results are published in the Dec 17 issue of the journal Science. The authors are Marius V. Costache and Sergio O. Valenzuela, an ICREA Professor who is leader of the Physics and Engineering of Nanodevices Group at ICN.

Spintronics is a branch of electronics that aims to use the electron spin rather than its charge to transport and store information. The electron spin comes in two forms, "spin up" or "spin down", and would allow significantly more data to be stored and analyzed than is possible with current electronics. Moreover, spin computers would be able to process vast amounts of information while using less energy and generating much less heat than conventional computers.

Advances in spintronics have already impacted commercial products, enabling a huge increase in storage capacity of magnetic hard disks. However, the devices comprise ferromagnetic multilayers that act as spin filters and require conventional electrical charge currents in order to work. To garner the full potential of spintronics, further fundamental advances are urgently needed.

Researchers working in this field face a key challenge: how to generate and control spins without the simultaneous generation of electric current, and the resultant energy losses? This would enable not just data storage, but calculations to be realized directly using spin states.

As reported in the journal Science, Prof. Valenzuela and Dr. Costache have proposed and experimentally demonstrated a ratchet concept to control the spin motion. In analogy to a ratchet wrench, which provides uniform rotation from oscillatory motion, such ratchets achieve directed spin transport in one direction, in the presence of an oscillating signal. Most important, this signal could be an oscillatory current that results from environmental charge noise; thus future devices based on this concept could function by gathering energy from the environment.

The efficiency of the ratchet can be very high. Reported results show electron polarizations of the order of 50%, but they could easily exceed 90% with device design improvements. The spin ratchet, which relies on a single electron transistor with a superconducting island and normal metal leads, is able to discriminate the electron spin, one electron at a time. The devices can also function in a "diode" regime that resolves spin with nearly 100% efficacy and, given that they work at the single-electron level, they could be utilized to address fundamental questions of quantum mechanics in the solid state or to help prepare the path for ultrapowerful quantum or spin computers.

The main drawback of the devices is that they work at low temperature. However, this does not represent a problem for quantum computing applications as solid state implementations of quantum computers will most likely require similar working conditions. Future research at the ICN will focus on increasing the spin ratchet efficiency and testing different ratchet protocols to implement a working device at room temperature.

####

About Catalan Institute of Nanotechnology
The Catalan Institute of Nanotechnology (ICN) is a private foundation created in 2003 and forms part of CERCA, the Network of Research Centers launched by the Catalan Government as a key plank of the long-term strategy to foster the development of a knowledge-based economy. The ICN´s multicultural team of scientists, representing over 20 nationalities, aims to produce cutting-edge science and develop next-generation technologies by investigating the new properties of matter that arise from the fascinating behavior at the nanoscale.

Research is devoted on one side to the study and understanding of fundamental physical phenomena associated to state variables (electrons, spin, phonons, photons, plasmons, etc.), the investigation of new properties derived from tailored nanostructures, and the opening of new routes and fabrication processes for the conception of new nanodevices.

On the other side, researchers also explore the state of aggregation at the nanometric scale, the development of nanoproduction methods, synthesis, analysis, and manipulation of aggregates and structures of nanometric dimension, and the development of techniques for characterizing and manipulating nanostructures.

These lead to commercially relevant studies such as the functionalization of nanoparticles, the encapsulation of active agents, novel drugs and vaccines, new nanodevices and nanosensors, with applications in health, food, energy, environment, etc.

The Institute actively promotes collaboration among scientists from diverse areas of specialization (physics, chemistry, biology, engineering), and trains new generations of scientists, offering studentships, doctoral and post-doctoral positions.

For more information, please click here

Contacts:
Institut Catala de Nanotecnologia
Tel: +(34) 93 581 4408


Communicacion Dept.:
Ana de la Osa


Principal Researcher:
ICREA Prof. Dr. Sergio Valenzuela

Copyright © Catalan Institute of Nanotechnology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Reversible Writing with Light: Self-assembling nanoparticles take their cues from their surroundings September 3rd, 2015

For 2-D boron, it's all about that base: Rice University theorists show flat boron form would depend on metal substrates September 2nd, 2015

Silk bio-ink could help advance tissue engineering with 3-D printers September 2nd, 2015

Phagraphene, a 'relative' of graphene, discovered September 2nd, 2015

Possible Futures

Silk bio-ink could help advance tissue engineering with 3-D printers September 2nd, 2015

Sediment dwelling creatures at risk from nanoparticles in common household products August 13th, 2015

Harris & Harris Group Reports Financial Statements as of June 30, 2015, and Announces a Stock Repurchase Program August 10th, 2015

Molecular trick alters rules of attraction for non-magnetic metals August 5th, 2015

Academic/Education

Sustainable nanotechnology center September 1st, 2015

National Science Foundation Selects SUNY Poly CNSE for Expanded $2.1M Northeast Advanced Technological Education Center: NSF Center Locates to NanoCollege in Support of Flourishing Tech Industry in NYS September 1st, 2015

Announcing Oxford Instruments and School of Physics signing a Memorandum of Understanding August 26th, 2015

Kwansei Gakuin University in Hyogo, Japan, uses Raman microscopy to study crystallographic defects in silicon carbide wafers August 25th, 2015

Spintronics

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials July 25th, 2015

Penn researchers discover new chiral property of silicon, with photonic applications July 25th, 2015

Spintronics just got faster July 20th, 2015

Fundamental observation of spin-controlled electrical conduction in metals: Ultrafast terahertz spectroscopy yields direct insight into the building block of modern magnetic memories July 6th, 2015

Memory Technology

New material science research may advance tech tools August 31st, 2015

'Magic' sphere for information transfer: Professor at the Lomonosov Moscow State University made the «magic» sphere for information transfer August 24th, 2015

Superlattice design realizes elusive multiferroic properties: New design sandwiches a polar metallic oxide between an insulating material August 23rd, 2015

High-precision control of nanoparticles for digital applications August 19th, 2015

Announcements

Reversible Writing with Light: Self-assembling nanoparticles take their cues from their surroundings September 3rd, 2015

Silk bio-ink could help advance tissue engineering with 3-D printers September 2nd, 2015

Phagraphene, a 'relative' of graphene, discovered September 2nd, 2015

A marine creature's magic trick explained: Crystal structures on the sea sapphire's back appear differently depending on the angle of reflection September 2nd, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic