Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > New method for making tiny catalysts holds promise for air quality

Civil and environmental engineering professor Mark Rood (left) and graduate student John Atkinson developed a novel method of producing porous carbon spheres with iron dispersed throughout them for catalytic and air quality applications. Photo by L. Brian Stauffer
Civil and environmental engineering professor Mark Rood (left) and graduate student John Atkinson developed a novel method of producing porous carbon spheres with iron dispersed throughout them for catalytic and air quality applications. Photo by L. Brian Stauffer

Abstract:
Fortified with iron: It's not just for breakfast cereal anymore. University of Illinois researchers have demonstrated a simpler method of adding iron to tiny carbon spheres to create catalytic materials that have the potential to remove contaminants from gas or liquid.
Civil and environmental engineering professor Mark Rood, graduate student John Atkinson and their team described their technique in the journal Carbon.

New method for making tiny catalysts holds promise for air quality

Champaign, IL | Posted on December 15th, 2010

Carbon structures can be a support base for catalysts, such as iron and other metals. Iron is a readily available, low-cost catalyst with possible catalytic applications for fuel cells and environmental applications for adsorbing harmful chemicals, such as arsenic or carbon monoxide. Researchers produce a carbon matrix that has many pores or tunnels, like a sponge. The large surface area created by the pores provides sites to disperse tiny iron particles throughout the matrix.

A common source of carbon is coal. Typically, scientists modify coal-based materials into highly porous activated carbon and then add a catalyst. The multi-step process takes time and enormous amounts of energy. In addition, materials made with coal are plagued by ash, which can contain traces of other metals that interfere with the reactivity of the carbon-based catalyst.
The Illinois team's ash-free, inexpensive process takes its carbon from sugar rather than coal.

In one continuous process, it produces tiny, micrometer-sized spheres of porous, spongy carbon embedded with iron nanoparticles - all in the span of a few seconds.

"That's what really sets this apart from other techniques. Some people have carbonized and impregnated with iron, but they have no surface area. Other people have surface area but weren't able to load it with iron," Atkinson said. "Our technique provides both the carbon surface and the iron nanoparticles."

The researchers built upon a technique called ultrasonic spray pyrolysis (USP), developed in U. of I. chemistry professor Kenneth Suslick's lab in 2005. Suslick used a household humidifier to make fine mist from a carbon-rich solution, then directed the mist through an extremely hot furnace, which evaporated the water from each droplet and left tiny, highly porous carbon spheres.

Atkinson used USP to make his carbon spheres, but added an iron-containing salt to a carbon-rich sugar solution. When the mist is piped into the furnace, the heat stimulates a chemical reaction between the solution ingredients that creates carbon spheres with iron particles dispersed throughout.

"We were able to take advantage of Dr. Suslick's USP technique, and we are building upon it by simultaneously impregnating the porous carbons with metal nanoparticles," Atkinson said. "It's simple because it's continuous. We can isolate the carbon, add pores, and impregnate iron into the carbon spheres in a single step."

Another advantage of the USP technique is the ability to create materials to address particular needs. By fabricating the material from scratch, rather than trying to modify off-the-shelf products, scientists and engineers can develop materials for specific problem-solving scenarios.

"Right now, you take coal out of the ground and modify it. It's difficult to tailor it to solve a particular air quality problem," Rood said. "We can readily change this new material by how it's activated to tailor its surface area and the amount of impregnated iron. This method is simple, flexible and tailorable."

Next, the researchers will explore applications for the material. Rood and Atkinson have received two grants from the National Science Foundation to develop the carbon-iron spheres to remove nitric oxide, mercury, and dioxin from gas streams - bioaccumulating pollutants that have caused concern as emissions from combustion sources.

Currently, the three pollutants can be dealt with separately by carbon-based adsorbents and catalysts, but the Illinois team and collaborators in Taiwan hope to harness carbon's adsorption properties and iron's reactivity to remove all three pollutants from gas streams simultaneously.
"We're looking at taking advantage of their porosity and, ideally, their catalytic applications as well," Atkinson said. "Carbon is a very versatile material. What's in my mind is a multi-pollutant control where you can use the porosity and the catalyst to tackle two problems at once."

EPRI, the National Science Foundation, the U.S. Department of Energy, the Air and Waste Management Association, and the University of Illinois supported this work. Co-authors included Suslick, graduate student Maria Fortunato, and researchers from the Illinois State Geological Survey.

####

For more information, please click here

Contacts:
Mark Rood
217-333-6963


John Atkinson


Liz Ahlberg
Physical Sciences Editor
217-244-1073

Copyright © University of Illinois

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A Tougher Tooth: A new dental restoration composite developed by UCSB scientists proves more durable than the conventional material August 22nd, 2017

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Tokai University research: Nanomaterial wrap for improved tissue imaging August 21st, 2017

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

Chemistry

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Clarifiying complex chemical processes with quantum computers August 3rd, 2017

Strem Chemicals Surpasses ChemStewards® Requirements: Strem Qualifies for SOCMA’s “Excellence” Ranking August 3rd, 2017

Possible Futures

A Tougher Tooth: A new dental restoration composite developed by UCSB scientists proves more durable than the conventional material August 22nd, 2017

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Tokai University research: Nanomaterial wrap for improved tissue imaging August 21st, 2017

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

Academic/Education

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Graduate Students from Across the Country Attend Hands-on NanoCamp: Prominent scientists Warren Oliver, Ph.D., and George Pharr, Ph.D., presented a weeklong NanoCamp for hand-picked graduate students across the United States July 26th, 2017

The Physics Department of Imperial College, London, uses the Quorum Q150T to deposit metals and ITO to make plasmonic sensors and electric contact pads July 13th, 2017

Announcements

A Tougher Tooth: A new dental restoration composite developed by UCSB scientists proves more durable than the conventional material August 22nd, 2017

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Tokai University research: Nanomaterial wrap for improved tissue imaging August 21st, 2017

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

Environment

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

New approach on research and design for CQD catalysts in World Scientific NANO August 2nd, 2017

Magnetized viruses attack harmful bacteria: Rice, China team uses phage-enhanced nanoparticles to kill bacteria that foul water treatment systems August 2nd, 2017

Fuel Cells

Engineers pioneer platinum shell formation process – and achieve first-ever observation August 11th, 2017

Argonne National Laboratory’s Continuous ALD Technology Licensed Exclusively to Forge Nano July 7th, 2017

Electrocatalyst nanostructures key to improved fuel cells, electrolyzers June 5th, 2017

Stanford scientists use nanotechnology to boost the performance of key industrial catalyst May 18th, 2017

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Landscapes give latitude to 2-D material designers: Rice University, Oak Ridge scientists show growing atom-thin sheets on cones allows control of defects August 9th, 2017

Research partnerships

A Tougher Tooth: A new dental restoration composite developed by UCSB scientists proves more durable than the conventional material August 22nd, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project