Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > UGA researchers develop rapid diagnostic test for common type of pneumonia

Abstract:
University of Georgia researchers have developed a technique that can diagnose a common type of pneumonia within minutes, potentially replacing existing tests that can take several days for results.

By Kirk McAlpin

UGA researchers develop rapid diagnostic test for common type of pneumonia

Athens, GA | Posted on December 15th, 2010

The researchers, whose findings are detailed online in the journal PLoS ONE, detected Mycoplasma pneumoniae, which causes atypical or "walking pneumonia," in true clinical samples with over 97 percent accuracy using a recently-developed nanotechnology-based platform.

"If you can make a positive identification from a 10-minute test, then appropriate antibiotics can be prescribed, limiting both the consequences in that patient and the likelihood that it will spread to others," said lead-author Duncan Krause, a professor in the department of microbiology in the UGA Franklin College of Arts and Sciences.

Krause and his colleagues built upon an existing technology called surface-enhanced Raman spectroscopy, which works by detecting spectral signatures of a near-infrared laser as it scatters off a biological specimen. They were able to enhance the Raman signal by using silver nanorod arrays to detect the tiny bacteria in throat swab specimens.

Krause, who also directs the interdisciplinary UGA Faculty of Infectious Diseases, compared the nanorod array developed by collaborator Yiping Zhao, director of the UGA Nanoscale Science and Engineering Center, to a brush with densely packed bristles, where each of the tiny silver rods extends out at a specific angle. The sample, such as bacteria from a throat swab, penetrates among the bristles, where the spectral signature produced by the laser is amplified and then analyzed by a computer program.

Krause noted that infections due to M. pneumoniae are very common yet difficult to diagnose. The bacterium is a major cause of respiratory disease in humans and the leading cause of pneumonia in older children and young adults.

"Walking pneumonia feels like a bad chest cold that will not go away," he explained. "It can persist for weeks and even months and can cause permanent damage to the lungs if not diagnosed promptly. A delay in diagnosis extends the likelihood for complications as well as continued transmission of the infection to others."

Krause said the device can be reduced to a size that could fit in a briefcase, although their testing is currently done only in a laboratory setting. "Our hope is that when we begin to explore the capabilities of this technology, it can be applied in point-of-care testing," he added. "Then the impact becomes truly significant."

Krause hopes the combined efforts of the research specialists in nanotechnology and infectious disease will eventually be able to determine if the technique is effective in detecting other pathogens in clinical samples. "We need to do a thorough job with mycoplasmas first," said Krause. "Then we can go to other clinical samples and ask the same questions with other infectious agents."

Funding for the research was provided by the U.S. Army Research Laboratory, the National Science Foundation and the Georgia Research Alliance.

For more information on UGA department of microbiology, see www.uga.edu/mib/

For further information on UGA Nanoscale Science and Engineering Center, see nano.uga.edu/

####

For more information, please click here

Contacts:
Writer:
Kirk McAlpin
706/542-8078


Duncan Krause
706/542-2671

Copyright © University of Georgia

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Analog DNA circuit does math in a test tube: DNA computers could one day be programmed to diagnose and treat disease August 25th, 2016

New approach to determining how atoms are arranged in materials August 25th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Possible Futures

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Academic/Education

AIM Photonics Announces Release of Process Design Kit (PDK) for Integrated Silicon Photonics Design August 25th, 2016

Nanotech Security Featured by Simon Fraser University: Company's Anti-Counterfeiting Technology Developed With the Help of University's 4D LABS Materials Research Institute August 21st, 2016

W.M. Keck Foundation awards Cal State LA a $375,000 research and education grant August 4th, 2016

Thomas Swan and NGI announce unique partnership July 28th, 2016

Nanomedicine

Nanofiber scaffolds demonstrate new features in the behavior of stem and cancer cells August 25th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

50 years after the release of the film 'Fantastic Voyage,' science upstages fiction: Science upstages fiction with nanorobotic agents designed to travel in the human body to treat cancer August 25th, 2016

Tunneling nanotubes between neurons enable the spread of Parkinson's disease via lysosomes August 24th, 2016

Announcements

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Nanobiotechnology

Analog DNA circuit does math in a test tube: DNA computers could one day be programmed to diagnose and treat disease August 25th, 2016

Nanofiber scaffolds demonstrate new features in the behavior of stem and cancer cells August 25th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

50 years after the release of the film 'Fantastic Voyage,' science upstages fiction: Science upstages fiction with nanorobotic agents designed to travel in the human body to treat cancer August 25th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic