Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > This Way and That

Pillars of salts: By combining planar cations and planar anionic structures based on š-conjugated acyclic Dipyrroles containing an anion, charge-by-charge assemblies could be formed (see picture). Not only crystals but also soft materials, such as supramolecular gels and thermotropic liquid crystals, could be made by this method.
Pillars of salts: By combining planar cations and planar anionic structures based on š-conjugated acyclic Dipyrroles containing an anion, charge-by-charge assemblies could be formed (see picture). Not only crystals but also soft materials, such as supramolecular gels and thermotropic liquid crystals, could be made by this method.

Abstract:
Alternating stacks of planar cations and planar dipyrrole-containing anions provides concept for formation of new materials

This Way and That

Weinheim, Germany | Posted on December 10th, 2010

Pyrroles, which are rings containing one nitrogen and four carbon atoms, are essential components of our red hemoglobin as well as the green chlorophyll in plants. Japanese researchers led by Hiromitsu Maeda at Risumeikan University have now also used this molecular motif in the construction of new nanostructured materials: They combined planar pyrrole-containing negatively charged complexes with similarly planar, positively charged organic ions. As the scientists report in the journal Angewandte Chemie, they were able to produce fibers and soft materials, such as supramolecular gels and liquid crystals.

Salts consist of cations and anions—positively and negatively charged particles. Most salts organize themselves into ordered crystals that are held together through the electrostatic attraction between the oppositely charged ions. However, there are also ionic liquids, which are salts that exist as melts at room temperature. The size and geometry of the ions involved prevent the formation of a strong crystal lattice. Ionic liquid crystals are another interesting class of materials. Liquid crystals are fluid like a liquid, though the particles in them are arranged in an ordered state. In addition, there are other materials that are more organized but whose components maintain a certain degree of mobility. These are of interest for the development of ferroelectric memory devices.

The Japanese researchers selected planar ions to build up self-organized materials in which the charged components are stacked in an alternating fashion. The first component is a planar complex made from a small inorganic ion and an organic receptor (receptor-anion complex). The critical structural element of the receptor contains two pyrroles bound into what is known as a š-conjugated environment. This means that some of the electrons are freely mobile as an "electron cloud" over a large area of the molecule. The ligand surrounds the anion on three sides. The second component is a disk-shaped organic cation made from an aromatic ring system, which also has an electron cloud. Because of the electrostatic attraction between oppositely charged ions, and also attractive interactions between the electron clouds, these anions and cations always stack themselves into alternating columnar units.

Depending on the type of additional side-groups on the components, the columns organize into various structures, such as fibers, supramolecular gels, or liquid crystals. Such alternating stacks of oppositely charged components (charge-by-charge assembly) has proven to be a successful concept for the production of novel materials from organic ions.

Author: Hiromitsu Maeda, Ritsumeikan University, Kusatsu (Japan), www.ritsumei.ac.jp/pharmacy/maeda/frame-10en.html

Title: Oriented Salts: Dimension-Controlled Assemblies from Planar Receptor-Anion Complexes

Angewandte Chemie International Edition 2010, 49, No. 52, 10079-10083, Permalink to the article: dx.doi.org/10.1002/anie.201006356

####

For more information, please click here

Copyright © Angewandte Chemie

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Leti and Oscaro Partner on Leti’s New Low-Power, Low-Cost Transceiver to Track Parcels July 12th, 2018

Oxford Instruments’ 22 Tesla superconducting magnet system commissioned at the UAM, making it the most intense magnetic field available outside a large international facility July 12th, 2018

Possible Futures

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides July 13th, 2018

Leti and Oscaro Partner on Leti’s New Low-Power, Low-Cost Transceiver to Track Parcels July 12th, 2018

Academic/Education

The Institute of Applied Physics at the University of Tsukuba near Tokyo in Japan uses Deben's ARM2 detector to better understand catalytic reaction mechanisms June 27th, 2018

Powering the 21st Century with Integrated Photonics: UCSB-Led Team Selected for Demonstration of a Novel Waveguide Platform Which is Transparent Throughout the MWIR and LWIR Spectral Bands June 19th, 2018

SUNY Poly Professor Eric Lifshin Selected for ‘Fellow of the Microanalysis Society’ Position for Significant Contributions to Microanalysis June 13th, 2018

Grand Opening of UC Irvine Materials Research Institute (IMRI) to Spotlight JEOL Center for Nanoscale Solutions: Renowned Materials Scientists to Present at the 1st International Symposium on Advanced Microscopy and Spectroscopy (ISAMS) April 18th, 2018

Memory Technology

Magnetic skyrmions: Not the only ones of their class: Jülich researchers discover a new type of magnetic particle-like object for data storage devices of the future June 28th, 2018

Tunable diamond string may hold key to quantum memory: A process similar to guitar tuning improves storage time of quantum memory May 24th, 2018

A powerful laser breakthrough: Lehigh research team demonstrates terahertz semiconductor laser with record-high output power May 2nd, 2018

Researchers develop nanoparticle films for high-density data storage: April 3rd, 2018

Announcements

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides July 13th, 2018

Leti and Oscaro Partner on Leti’s New Low-Power, Low-Cost Transceiver to Track Parcels July 12th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project