Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > This Way and That

Pillars of salts: By combining planar cations and planar anionic structures based on ū-conjugated acyclic Dipyrroles containing an anion, charge-by-charge assemblies could be formed (see picture). Not only crystals but also soft materials, such as supramolecular gels and thermotropic liquid crystals, could be made by this method.
Pillars of salts: By combining planar cations and planar anionic structures based on ū-conjugated acyclic Dipyrroles containing an anion, charge-by-charge assemblies could be formed (see picture). Not only crystals but also soft materials, such as supramolecular gels and thermotropic liquid crystals, could be made by this method.

Abstract:
Alternating stacks of planar cations and planar dipyrrole-containing anions provides concept for formation of new materials

This Way and That

Weinheim, Germany | Posted on December 10th, 2010

Pyrroles, which are rings containing one nitrogen and four carbon atoms, are essential components of our red hemoglobin as well as the green chlorophyll in plants. Japanese researchers led by Hiromitsu Maeda at Risumeikan University have now also used this molecular motif in the construction of new nanostructured materials: They combined planar pyrrole-containing negatively charged complexes with similarly planar, positively charged organic ions. As the scientists report in the journal Angewandte Chemie, they were able to produce fibers and soft materials, such as supramolecular gels and liquid crystals.

Salts consist of cations and anionsópositively and negatively charged particles. Most salts organize themselves into ordered crystals that are held together through the electrostatic attraction between the oppositely charged ions. However, there are also ionic liquids, which are salts that exist as melts at room temperature. The size and geometry of the ions involved prevent the formation of a strong crystal lattice. Ionic liquid crystals are another interesting class of materials. Liquid crystals are fluid like a liquid, though the particles in them are arranged in an ordered state. In addition, there are other materials that are more organized but whose components maintain a certain degree of mobility. These are of interest for the development of ferroelectric memory devices.

The Japanese researchers selected planar ions to build up self-organized materials in which the charged components are stacked in an alternating fashion. The first component is a planar complex made from a small inorganic ion and an organic receptor (receptor-anion complex). The critical structural element of the receptor contains two pyrroles bound into what is known as a ū-conjugated environment. This means that some of the electrons are freely mobile as an "electron cloud" over a large area of the molecule. The ligand surrounds the anion on three sides. The second component is a disk-shaped organic cation made from an aromatic ring system, which also has an electron cloud. Because of the electrostatic attraction between oppositely charged ions, and also attractive interactions between the electron clouds, these anions and cations always stack themselves into alternating columnar units.

Depending on the type of additional side-groups on the components, the columns organize into various structures, such as fibers, supramolecular gels, or liquid crystals. Such alternating stacks of oppositely charged components (charge-by-charge assembly) has proven to be a successful concept for the production of novel materials from organic ions.

Author: Hiromitsu Maeda, Ritsumeikan University, Kusatsu (Japan), www.ritsumei.ac.jp/pharmacy/maeda/frame-10en.html

Title: Oriented Salts: Dimension-Controlled Assemblies from Planar Receptor-Anion Complexes

Angewandte Chemie International Edition 2010, 49, No. 52, 10079-10083, Permalink to the article: dx.doi.org/10.1002/anie.201006356

####

For more information, please click here

Copyright © Angewandte Chemie

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Bosch announces high-performance MEMS acceleration sensors for wearables June 27th, 2017

Nanometrics to Participate in the 9th Annual CEO Investor Summit 2017: Accredited investor and publishing research analyst event held concurrently with SEMICON West and Intersolar 2017 in San Francisco June 27th, 2017

NMRC, University of Nottingham chooses the Quorum Q150 coater for its reliable and reproducible film thickness when coating samples with iridium June 27th, 2017

Picosunís ALD solutions enable novel high-speed memories June 27th, 2017

Possible Futures

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Academic/Education

Oxford Instruments congratulates Lancaster University for inaugurating the IsoLab, built for studying quantum systems June 20th, 2017

The 2017 Winners for Generation Nano June 8th, 2017

MIT Energy Initiative awards 10 seed fund grants for early-stage energy research May 4th, 2017

Bar-Ilan University to set up quantum research center May 1st, 2017

Memory Technology

Picosunís ALD solutions enable novel high-speed memories June 27th, 2017

New prospects for universal memory -- high speed of RAM and the capacity of flash: Thin films created at MIPT could be the basis for future development of ReRAM June 17th, 2017

Geoffrey Beach: Drawn to explore magnetism: Materials researcher is working on the magnetic memory of the future April 25th, 2017

New ultrafast flexible and transparent memory devices could herald new era of electronics April 1st, 2017

Announcements

Bosch announces high-performance MEMS acceleration sensors for wearables June 27th, 2017

Nanometrics to Participate in the 9th Annual CEO Investor Summit 2017: Accredited investor and publishing research analyst event held concurrently with SEMICON West and Intersolar 2017 in San Francisco June 27th, 2017

NMRC, University of Nottingham chooses the Quorum Q150 coater for its reliable and reproducible film thickness when coating samples with iridium June 27th, 2017

Picosunís ALD solutions enable novel high-speed memories June 27th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project