Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Nano squid skin: DOD awards $6M for metamaterials research

Giant Australian cuttlefish, Sepia apama, in a conspicuous pattern while swimming, and then in a camouflaged pattern that combines “mottle” with “disruptive” coloration. Credit: Roger Hanlon.
Giant Australian cuttlefish, Sepia apama, in a conspicuous pattern while swimming, and then in a camouflaged pattern that combines “mottle” with “disruptive” coloration. Credit: Roger Hanlon.

Abstract:
Engineers, marine biologists will study, emulate nature's camouflage masters

Nano squid skin: DOD awards $6M for metamaterials research

Houston, TX | Posted on December 9th, 2010

Nanotechnologists, marine biologists and signal-processing experts from Rice University, the Marine Biological Laboratory in Woods Hole, Mass., and other U.S. universities have won a $6 million grant from the Office of Naval Research to unlock the secrets of nature's best camouflage artists. Ultimately, the team hopes to create "metamaterials" that emulate some of the elegant skin colors and patterns produced by marine animals.

"Our internal nickname for this project is 'squid skin,' but it is really about fundamental research," said Naomi Halas, a nano-optics pioneer at Rice and the principal investigator on the four-year grant. "Our deliverable is knowledge -- the basic discoveries that will allow us to make materials that are observant, adaptive and responsive to their environment."

Halas said the project was inspired by the groundbreaking work of grant co-investigator Roger Hanlon, a Woods Hole marine biologist who has spent more than three decades studying the class of animals called cephalopods that includes the squid, octopus and cuttlefish. One of Hanlon's many discoveries is that cephalopod skins contain opsins, the same type of light-sensing proteins that function in eyes.

"The presence of opsin means they have some primitive vision sensor embedded in their skin," Halas said. "So the questions we have are, 'What can we, as engineers, learn from the way these animals perceive light and color? Do their brains play a part, or is this totally downloaded into the skin so it's not using animal CPU time?"

Halas said the project has several tracks. The team's marine biologists -- Hanlon and Thomas Cronin of the University of Maryland, Baltimore County -- will investigate how cephalopods sense and use light to regulate their skin's patterns, colors and contrasts.

"This project will enable us to explore an exciting new avenue of vision research -- distributed light sensing throughout the skin," Hanlon said. "How and where that visual information is used by the nervous system is likely to uncover some novel neural circuitry."

It will be up to the team's engineers to try and emulate cephalopod skin using new metamaterials, materials that blur the line between material and machine. Halas said the group plans to use patterns of organized nanostructures to create sheets of materials that can change colors quickly -- like the pixels of a high-definition television screen -- but which can also "see" light in the same way that squid skins do. A key component of the material will be unique clusters of nanomaterials discovered by Rice chemist Stephan Link, a co-investigator on the grant. Halas said Link's materials are very sensitive to changes in their environment and can more easily change colors than other nanomaterials.

Another type of nanoparticle will likely be used for light sensing, and the team will also need a control mechanism, a system for processing incoming light signals and generating camouflage output. Co-investigator Peter Nordlander, a Rice physicist, will work on optics, and materials scientist John Rogers, a co-investigator at the University of Illinois, will help bring everything together into a package that's large enough to be seen without a microscope.

"This is an inherently multidisciplinary problem," Halas said. "No one is going to understand this unless you have marine biologists talking in detail to systems engineers, who talk in detail to nanotechnologists, who talk in detail to the people who integrate everything. There has to be strong dialogue among everyone."

Halas said the biggest surprise so far has been the close affinity that's developed between Hanlon and Rice signal-processing expert Rich Baraniuk, the leader of the team's systems engineering effort.

"You would think that applied mathematicians and marine biologists would have almost nothing in common," she said. "But they have more in common than the rest of us. They are thinking about basically the same problems, but they are thinking about them from very different points of view."

Related materials:

PBS NOVA ScienceNOW profile of Naomi Halas: www.pbs.org/wgbh/nova/body/naomi-halas.html

Images, video and information about Roger Hanlon's research:

www.mbl.edu/news/press_releases/2009/2009_pr_01_15.html

####

About Rice University
Located in Houston, Rice University is consistently ranked one of America's best teaching and research universities. Known for its "unconventional wisdom," Rice is distinguished by its: size -- 3,279 undergraduates and 2,277 graduate students; selectivity -- 12 applicants for each place in the freshman class; resources -- an undergraduate student-to-faculty ratio of 5-to-1; sixth largest endowment per student among American private research universities; residential college system, which builds communities that are both close-knit and diverse; and collaborative culture, which crosses disciplines, integrates teaching and research, and intermingles undergraduate and graduate work.

For more information, please click here

Contacts:
Jade Boyd
713-348-6778

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A nano-roundabout for light December 10th, 2016

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Academic/Education

Oxford Nanoimaging report on how the Nanoimager, a desktop microscope delivering single molecule, super-resolution performance, is being applied at the MRC Centre for Molecular Bacteriology & Infection November 22nd, 2016

The University of Applied Sciences in Upper Austria uses Deben tensile stages as an integral part of their computed tomography research and testing facility October 18th, 2016

Enterprise In Space Partners with Sketchfab and 3D Hubs for NewSpace Education October 13th, 2016

New Agricultural Research Center Debuts at UCF October 12th, 2016

Announcements

A nano-roundabout for light December 10th, 2016

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Exotic insulator may hold clue to key mystery of modern physics: Johns Hopkins-led research shows material living between classical and quantum worlds December 8th, 2016

Physicists decipher electronic properties of materials in work that may change transistors December 6th, 2016

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Research partnerships

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Exotic insulator may hold clue to key mystery of modern physics: Johns Hopkins-led research shows material living between classical and quantum worlds December 8th, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project