Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Expandable Nanoparticles Show Promise in Treating Lethal Abdominal Cavity Tumors

Abstract:
Too often, patients with ovarian cancer or mesothelioma develop metastases that spread within the abdominal cavity, and when that occurs, the chances of surviving beyond five years drops to less than 40%, even after surgical removal of the metastatic tumors. In attempt to develop a new therapeutic approach to treating peritoneal metastases, a research team at Boston University has developed a novel, drug-loaded polymeric nanoparticle that responds to the acidic pH inside tumor cells by expanding, releasing the anticancer agent paclitaxel slowly over a period of 24 hours. Tests with these new nanoparticles demonstrated that they not only decreased tumor growth, but prevented new tumors from implanting themselves in the abdominal cavity.

Expandable Nanoparticles Show Promise in Treating Lethal Abdominal Cavity Tumors

Bethesda, MD | Posted on November 30th, 2010

Mark Grinstaff led the research team that published its work in the journal Biomaterials. Investigators from Brigham and Women's Hospital also participated in this study.

The goal of the investigator's efforts was to create a nanoparticle that would release paclitaxel only when taken up by tumors, release drug slowly to maximize the number of dividing cells exposed to the drug, and that would remain in the vicinity of the tumors while it released drug. The investigators prepared their cross-linked polymeric nanoparticles using a technique known as mini-emulsion polymerization to create a material that remains intact but swells at the low pH characteristic of tumor cells. Tests with paclitaxel-loaded nanoparticles showed that they release about 4% of their drug load each hour for 24 hours, creating a sustained load of drug in the vicinity of the nanoparticle. When added to mesothelioma cells growing in culture, the drug-loaded nanoparticles showed substantial cell-killing activity.

Based on these initial results, the investigators treated mice that had an aggressive form of mesothelioma with their nanoparticles, free paclitaxel, or paclitaxel loaded into a similar, but not expandable, nanoparticle. Only the expandable nanoparticles produced a substantial reduction in tumor mass and disease severity scores. Moreover, only the drug-loaded expandable nanoparticles prevented the development of peritoneal tumor implants. Finally, animals treated with the drug-loaded expandable nanoparticles survived nearly twice as long as did animals treated with free paclitaxel, the current therapy of choice for peritoneal tumors. Other experiments conducted by the investigators showed that when injected into the abdominal cavity, the drug-loaded expandable nanoparticles homed to tumor sites and remained there for at least seven days.

####

About The National Cancer Institute (NCI)
The NCI Alliance for Nanotechnology in Cancer is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Contacts:
National Cancer Institute
Center for Strategic Scientific Initiatives
ATTN: NCI Office of Cancer Nanotechnology Research (OCNR)
Building 31, Room 10A52
31 Center Drive, MSC 2580
Bethesda, MD 20892-2580
(301) 451-8983

Copyright © The National Cancer Institute (NCI)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View abstract - "The performance of expansile nanoparticles in a murine model of peritoneal carcinomatosis."

Related News Press

News and information

Promising use of nanodiamonds in delivering cancer drug to kill cancer stem cells: NUS study shows that delivery of Epirubicin by nanodiamonds resulted in a normally lethal dosage of Epirubicin becoming a safe and effective dosage for treatment of liver cancer January 26th, 2015

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

NANOPOSTER 2015 - 5th Virtual Nanotechnology Conference - call for abstracts January 24th, 2015

Nanosensor Used for Simultaneous Determination of Effective Tea Components January 24th, 2015

Govt.-Legislation/Regulation/Funding/Policy

The latest fashion: Graphene edges can be tailor-made: Rice University theory shows it should be possible to tune material's properties January 24th, 2015

Scientists 'bend' elastic waves with new metamaterials that could have commercial applications: Materials could benefit imaging and military enhancements such as elastic cloaking January 23rd, 2015

Harper Government Supports Research Innovation in Western Canada January 22nd, 2015

EnvisioNano: An image contest hosted by the National Nanotechnology Initiative (NNI) January 22nd, 2015

Nanomedicine

Promising use of nanodiamonds in delivering cancer drug to kill cancer stem cells: NUS study shows that delivery of Epirubicin by nanodiamonds resulted in a normally lethal dosage of Epirubicin becoming a safe and effective dosage for treatment of liver cancer January 26th, 2015

Teijin to Participate in Nano Tech 2015 January 22nd, 2015

2nd International Conference on Infectious Diseases & Nanomedicine (December 15-18, 2015, Kathmandu, NEPAL) January 22nd, 2015

Anti-microbial coatings with a long-term effect for surfaces – presentation at nano tech 2015 in Japan January 21st, 2015

Discoveries

Promising use of nanodiamonds in delivering cancer drug to kill cancer stem cells: NUS study shows that delivery of Epirubicin by nanodiamonds resulted in a normally lethal dosage of Epirubicin becoming a safe and effective dosage for treatment of liver cancer January 26th, 2015

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

Nanosensor Used for Simultaneous Determination of Effective Tea Components January 24th, 2015

The latest fashion: Graphene edges can be tailor-made: Rice University theory shows it should be possible to tune material's properties January 24th, 2015

Announcements

Promising use of nanodiamonds in delivering cancer drug to kill cancer stem cells: NUS study shows that delivery of Epirubicin by nanodiamonds resulted in a normally lethal dosage of Epirubicin becoming a safe and effective dosage for treatment of liver cancer January 26th, 2015

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

NANOPOSTER 2015 - 5th Virtual Nanotechnology Conference - call for abstracts January 24th, 2015

Nanosensor Used for Simultaneous Determination of Effective Tea Components January 24th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE