Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Expandable Nanoparticles Show Promise in Treating Lethal Abdominal Cavity Tumors

Abstract:
Too often, patients with ovarian cancer or mesothelioma develop metastases that spread within the abdominal cavity, and when that occurs, the chances of surviving beyond five years drops to less than 40%, even after surgical removal of the metastatic tumors. In attempt to develop a new therapeutic approach to treating peritoneal metastases, a research team at Boston University has developed a novel, drug-loaded polymeric nanoparticle that responds to the acidic pH inside tumor cells by expanding, releasing the anticancer agent paclitaxel slowly over a period of 24 hours. Tests with these new nanoparticles demonstrated that they not only decreased tumor growth, but prevented new tumors from implanting themselves in the abdominal cavity.

Expandable Nanoparticles Show Promise in Treating Lethal Abdominal Cavity Tumors

Bethesda, MD | Posted on November 30th, 2010

Mark Grinstaff led the research team that published its work in the journal Biomaterials. Investigators from Brigham and Women's Hospital also participated in this study.

The goal of the investigator's efforts was to create a nanoparticle that would release paclitaxel only when taken up by tumors, release drug slowly to maximize the number of dividing cells exposed to the drug, and that would remain in the vicinity of the tumors while it released drug. The investigators prepared their cross-linked polymeric nanoparticles using a technique known as mini-emulsion polymerization to create a material that remains intact but swells at the low pH characteristic of tumor cells. Tests with paclitaxel-loaded nanoparticles showed that they release about 4% of their drug load each hour for 24 hours, creating a sustained load of drug in the vicinity of the nanoparticle. When added to mesothelioma cells growing in culture, the drug-loaded nanoparticles showed substantial cell-killing activity.

Based on these initial results, the investigators treated mice that had an aggressive form of mesothelioma with their nanoparticles, free paclitaxel, or paclitaxel loaded into a similar, but not expandable, nanoparticle. Only the expandable nanoparticles produced a substantial reduction in tumor mass and disease severity scores. Moreover, only the drug-loaded expandable nanoparticles prevented the development of peritoneal tumor implants. Finally, animals treated with the drug-loaded expandable nanoparticles survived nearly twice as long as did animals treated with free paclitaxel, the current therapy of choice for peritoneal tumors. Other experiments conducted by the investigators showed that when injected into the abdominal cavity, the drug-loaded expandable nanoparticles homed to tumor sites and remained there for at least seven days.

####

About The National Cancer Institute (NCI)
The NCI Alliance for Nanotechnology in Cancer is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with todayís explosion in knowledge.

For more information, please click here

Contacts:
National Cancer Institute
Center for Strategic Scientific Initiatives
ATTN: NCI Office of Cancer Nanotechnology Research (OCNR)
Building 31, Room 10A52
31 Center Drive, MSC 2580
Bethesda, MD 20892-2580
(301) 451-8983

Copyright © The National Cancer Institute (NCI)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View abstract - "The performance of expansile nanoparticles in a murine model of peritoneal carcinomatosis."

Related News Press

News and information

Scientists Capture Ultrafast Snapshots of Light-Driven Superconductivity: X-rays reveal how rapidly vanishing 'charge stripes' may be behind laser-induced high-temperature superconductivity April 16th, 2014

'Life Redesigned: The Emergence of Synthetic Biology' Lecture at Brookhaven Lab on Wednesday, April 30: Biomedical Engineer James Collins to Speak for BSA Distinguished Lecture Series April 16th, 2014

ECHA Planning Workshop on Regulatory Challenges in the Risk Assessment of Nanomaterials April 16th, 2014

Lumerical files a provisional patent that extends the standard eigenmode expansion propagation technique to better address waveguide component design. Lumericalís EME propagation tool will address a wide set of waveguide applications in silicon photonics and integrated optics April 16th, 2014

Govt.-Legislation/Regulation/Funding/Policy

'Life Redesigned: The Emergence of Synthetic Biology' Lecture at Brookhaven Lab on Wednesday, April 30: Biomedical Engineer James Collins to Speak for BSA Distinguished Lecture Series April 16th, 2014

ECHA Planning Workshop on Regulatory Challenges in the Risk Assessment of Nanomaterials April 16th, 2014

UT Arlington physicist creates new nanoparticle for cancer therapy April 16th, 2014

Relieving electric vehicle range anxiety with improved batteries: Lithium-sulfur batteries last longer with nanomaterial-packed cathode April 16th, 2014

Nanomedicine

UT Arlington physicist creates new nanoparticle for cancer therapy April 16th, 2014

Nanobiotix Appoints Thierry Otin as Head of Manufacturing and Supply April 15th, 2014

PAM-XIAMEN Offers UV LED wafer April 15th, 2014

Nanocrystalline cellulose modified into an efficient viral inhibitor April 15th, 2014

Discoveries

Scientists Capture Ultrafast Snapshots of Light-Driven Superconductivity: X-rays reveal how rapidly vanishing 'charge stripes' may be behind laser-induced high-temperature superconductivity April 16th, 2014

Scientists observe quantum superconductor-metal transition and superconducting glass: A team including MIPT physicist observed quantum superconductor-metal transition and superconducting glass April 16th, 2014

UT Arlington physicist creates new nanoparticle for cancer therapy April 16th, 2014

Targeting cancer with a triple threat: MIT chemists design nanoparticles that can deliver three cancer drugs at a time April 15th, 2014

Announcements

UT Arlington physicist creates new nanoparticle for cancer therapy April 16th, 2014

Relieving electric vehicle range anxiety with improved batteries: Lithium-sulfur batteries last longer with nanomaterial-packed cathode April 16th, 2014

Aerotech X-Y ball-screw stage for economical high performance Planar positioning April 16th, 2014

Energy Research Facility Construction Project at Brookhaven Lab Wins U.S. Energy Secretary's Achievement Award April 16th, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE