Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Microfluidics-Imaging Platform Detects Cancer Growth Signaling in Minute Biopsy Samples

Abstract:
Inappropriate growth and survival signaling, which leads to the aberrant growth of cancer cells, is a driving force behind the development of tumors. Much current cancer research focuses on the kinase enzymes whose mutations are responsible for such disregulated signaling, and many successful molecularly targeted anti-cancer therapeutics are directed at inhibiting kinase activity.

Microfluidics-Imaging Platform Detects Cancer Growth Signaling in Minute Biopsy Samples

Bethesda, MD | Posted on November 30th, 2010

Now, a team of investigators from the University of California, Los Angles (UCLA) has developed an in vitro method for assessing kinase activity in minute tissue samples from patients. The method involves an integrated microfluidics and imaging platform that can reproducibly measure kinase enzymatic activity from as few as 3,000 cells. In a paper published in the journal Cancer Research, the UCLA researchers describe several new technological advances in microfluidics and imaging detection they co-developed to measure kinase activity in small-input samples. The team applied their microfluidic kinase assay to human leukemia patient samples.

"Because the device requires only a very small tissue sample to give results, this method creates new potential for direct kinase experimentation and diagnostics on patient blood, bone marrow and needle biopsy samples," said Thomas Graeber, who along with Hsian-Rong Tseng and Arion Chatziioannou, led the research team. "For example, the stem cell properties of leukemia can be directly studied from patient samples." Drs. Graeber and Tseng are member of the Nanosystems Biology Cancer Center at UCLA, one of nine Centers of Cancer Nanotechnology Excellence funded by the National Cancer Institute's Alliance for Nanotechnology in Cancer.

To improve radio-signal detection, the team used a novel solid-state beta camera detector that can sensitively detect and spatially resolve radioactive signal directly from a microfluidic chip. The beta camera provides a picture of the activity on the chip, allowing real-time, quantitative monitoring of the assay performance and outcome. In their first application of the device, the team measured the activity of the mutated kinase responsible for chronic myelogenous leukemia. This mutation is targeted by the clinically successful kinase inhibitor Gleevec. "We are not aware of other work demonstrating solid-state integrated radioactive imaging from a microfluidic platform," said Dr. Chatziioannou.

The resulting microfluidic in vitro kinase radioassay improves reaction efficiency, compared with standard assays, and can be processed in much less time. This greater efficiency, coupled with the high sensitivity of the beta camera, reduces the amount of sample cell input by two to three orders of magnitude, compared with conventional and 96-well assays. The assay includes a kinase immunocapture step to increase specificity towards the kinase of interest. "To get the kinase assay to work in a microfluidic environment, we needed to develop new protocols and reagents for efficiently manipulating solid-support kinase capture beads using microfluidic trap-and-release valves," said Dr. Tseng.

Integration of the solid-state beta camera allowed the investigators to monitor the assay in real time, which proved useful during protocol development and testing. With the integration of the compact camera, the microfluidic format assay has the potential to be developed into inexpensive bench-top, stand-alone units. Taken together, the reduced sample input required, the decreased assay time, and the digitally controlled reproducibility of the team's microfluidic kinase radioassay facilitates direct experimentation on clinical samples that are either precious or perishable.

####

About The National Cancer Institute (NCI)
The NCI Alliance for Nanotechnology in Cancer is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Contacts:
National Cancer Institute
Center for Strategic Scientific Initiatives
ATTN: NCI Office of Cancer Nanotechnology Research (OCNR)
Building 31, Room 10A52
31 Center Drive, MSC 2580
Bethesda, MD 20892-2580
(301) 451-8983

Copyright © The National Cancer Institute (NCI)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View abstract - "Integrated Microfluidic and Imaging Platform for Kinase Activity Radioassay to Analyze Minute Patient Cancer Samples."

Related News Press

News and information

Imec Reports Four Percent Growth for 2013 Fiscal Year End —Continues to Accelerate Innovation Through Global Collaborations and Technological Breakthroughs in Nanoelectronics— April 24th, 2014

Multicapacity Microreactor for Catalyst Characterisation April 24th, 2014

Making graphene work for real-world devices: Fundamental research in phonon scattering helps researchers design graphene materials for applications April 24th, 2014

Return on investment for kit and promotion materials April 24th, 2014

Imaging

Guo Lab Shows Potential of RNA as Heat-resistant Polymer Material for Nanoarchitectures April 23rd, 2014

Berkeley Lab Researchers Demonstrate First Size-based Chromatography Technique for the Study of Living Cells April 22nd, 2014

MRI, on a molecular scale: Researchers develop system that could one day peer into the atomic structure of individual molecules April 20th, 2014

Oxford Instruments Asylum Research Introduces the MFP-3D InfinityTM AFM Featuring Powerful New Capabilities and Stunning High Performance April 18th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Imec Reports Four Percent Growth for 2013 Fiscal Year End —Continues to Accelerate Innovation Through Global Collaborations and Technological Breakthroughs in Nanoelectronics— April 24th, 2014

Making graphene work for real-world devices: Fundamental research in phonon scattering helps researchers design graphene materials for applications April 24th, 2014

Atomic switcheroo explains origins of thin-film solar cell mystery April 23rd, 2014

High-Performance, Low-Cost Ultracapacitors Built with Graphene and Carbon Nanotubes: Future devices based on technology could bridge gap between batteries and conventional capacitors in portable electronics and hybrid electric vehicles April 23rd, 2014

Nanomedicine

Return on investment for kit and promotion materials April 24th, 2014

University of Tehran Researchers Invent Non-Enzyme Sensor to Detect Blood Sugar April 23rd, 2014

Gold nanoparticles help target, quantify breast cancer gene segments in a living cell April 23rd, 2014

QuantuMDx announce prototype handheld lab for 15 minute malaria diagnosis and drug resistance testing April 23rd, 2014

Discoveries

Making graphene work for real-world devices: Fundamental research in phonon scattering helps researchers design graphene materials for applications April 24th, 2014

Return on investment for kit and promotion materials April 24th, 2014

Protecting olive oil from counterfeiters April 24th, 2014

Gold nanoparticles help target, quantify breast cancer gene segments in a living cell April 23rd, 2014

Announcements

Imec Reports Four Percent Growth for 2013 Fiscal Year End —Continues to Accelerate Innovation Through Global Collaborations and Technological Breakthroughs in Nanoelectronics— April 24th, 2014

Multicapacity Microreactor for Catalyst Characterisation April 24th, 2014

Making graphene work for real-world devices: Fundamental research in phonon scattering helps researchers design graphene materials for applications April 24th, 2014

Return on investment for kit and promotion materials April 24th, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE