Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Materials research with antiparticles: Unravelling the secret of nanocrystalline materials

Nanocrystalline materials rely on imperfection. Structural defects are responsible for their unusual material properties. Copyright Graz University of Technology
Nanocrystalline materials rely on imperfection. Structural defects are responsible for their unusual material properties. Copyright Graz University of Technology

Abstract:
Certain structural defects in materials are what make innovative nanocrystalline bulk metals very hard and yet readily malleable. As these defects are found at the atomic level of the metal structure they are difficult to investigate in experiments. However, Austrian scientists have recently taken a significant step towards understanding such atomic defects. They succeeded in doing so by combining two special methods in a project funded by the Austrian Science Fund FWF. The results have now been published in the renowned scientific journal Physical Review Letters.

Materials research with antiparticles: Unravelling the secret of nanocrystalline materials

Vienna | Posted on November 29th, 2010

Extremely hard but still easily malleable - the properties of the so-called nanocrystalline bulk metals give rise to many questions among physicists. Scientists at Graz University of Technology have finally managed to answer some of those questions through experiments.

The scientists set out to monitor the structural changes in the metals in real time. They were thus able to conclude that atomic defects are a central cause of the interesting physical material properties.

Nanocrystalline metals consist of countless crystallites (grains), which are mostly smaller than one hundred nanometres - and the smaller the grain, the more solid is the metal. The structure of nanocrystalline metals is actually very regular: the atoms in the grains lie tightly packed in rank and file. However, when the metals are produced, atomic defects are involuntarily introduced which disturb the atomic order within the grains. For example, certain layers are not located directly on top of each other: some atoms are missing or rows are misaligned. Austrian materials physicists have now produced the first experimental evidence of these effects, which are closely related to the mechanical properties. They have published their results in the journal Physical Review Letters, where they describe how the combination of two special methods can be used to closely examine atomic defects.

Spy attacks on metals

As atomic defects on the nanoscale are difficult to spot, the scientists worked with so-called positrons. Dr. Wolfgang Sprengel from Graz University of Technology explains: "A positron is a subatomic particle that is almost identical to the electron, with one difference: it is positively charged. If a positron and an electron meet, they annihilate each other. In the places where atomic defects are present, there are fewer electrons and therefore fewer occurrences of annihilation. The positrons therefore serve as spies that deliver detailed information about the atomic defects. We have used this effect to analyse the fast processes of atomic defects in metals." To carry out the experiments, the scientists availed themselves of the FRM II research reactor at the Technische Universität München (TUM), where they deployed the positron beam with the highest intensity in the world.

Two methods, one result

In addition to the positron-electron annihilation, macroscopic length-change measurements were made upon annihilation of the defects - by means of dilatometry. This combination of dilatometry and positron-electron annihilation is a first of its kind and it delivered the evidence that some of the seemingly mysterious physical properties of the nanocrystalline bulk metals can be attributed to these structural defects. The cause of the defects can be found in the production background of the metals. Nanocrystalline bulk metals are produced using very complex methods - such as high-pressure torsion (Erich Schmidt Institute Leoben) - which give rise to the atomic defects.

The FWF project headed by Dr. Roland Würschum is carried out in close cooperation with the University of Vienna and the Erich Schmidt Institute in Leoben, and is also closely linked to the National Research Network (NFN) on nanocrystalline bulk metals. The project has enabled a better understanding of fundamental principles, which is essential for the application of these innovative materials.

Original publikation:
In situ probing of fast defect annealing in Cu and Ni with a high-intensity positron beam. B. Oberdorfer, E-M. Steyskal, W. Sprengel, W. Puff, P. Pikart, C. Hugenschmidt, M. Zehetbauer, R. Pippan, R. Wüschum. Published September 28, 2010. Physical Review Letters 105, 146101. DOI: 10.1103/PhysRevLett.105.146101.

####

For more information, please click here

Contacts:
Scientific Contact
Univ.-Prof. Dr. Roland Würschum
Technische Universität Graz
Institut für Materialphysik
Petersgasse 16/IV
8010 Graz
T +43 / 316 / 873 - 8481
E

Austrian Science Fund FWF
Mag. Stefan Bernhardt
Haus der Forschung
Sensengasse 1
1090 Vienna, Austria
T +43 / 1 / 505 67 40 - 8111
E

Copy Editing & Distribution
PR&D – Public Relations for Research & Education
Mariannengasse 8
1090 Vienna, Austria
T +43 / 1 / 505 70 44
E
W www.prd.at

Copyright © Austrian Science Fund

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Particles from outer space are wreaking low-grade havoc on personal electronics February 19th, 2017

Liquid metal nano printing set to revolutionize electronics: Creating integrated circuits just atoms thick February 18th, 2017

Engineers shrink microscope to dime-sized device February 17th, 2017

Francis Alexander Named Deputy Director of Brookhaven Lab's Computational Science Initiative February 16th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Engineers shrink microscope to dime-sized device February 17th, 2017

Francis Alexander Named Deputy Director of Brookhaven Lab's Computational Science Initiative February 16th, 2017

Good vibrations help reveal molecular details: Rice University scientists combine disciplines to pinpoint small structures in unlabeled molecules February 15th, 2017

Research reveals novel quantum state in strange insulating materials February 14th, 2017

Academic/Education

Oxford Nanoimaging report on how the Nanoimager, a desktop microscope delivering single molecule, super-resolution performance, is being applied at the MRC Centre for Molecular Bacteriology & Infection November 22nd, 2016

The University of Applied Sciences in Upper Austria uses Deben tensile stages as an integral part of their computed tomography research and testing facility October 18th, 2016

Enterprise In Space Partners with Sketchfab and 3D Hubs for NewSpace Education October 13th, 2016

New Agricultural Research Center Debuts at UCF October 12th, 2016

Discoveries

Particles from outer space are wreaking low-grade havoc on personal electronics February 19th, 2017

Liquid metal nano printing set to revolutionize electronics: Creating integrated circuits just atoms thick February 18th, 2017

Engineers shrink microscope to dime-sized device February 17th, 2017

Research opens door to smaller, cheaper, more agile communications tech February 16th, 2017

Materials/Metamaterials

Metamaterial: Mail armor inspires physicists: KIT researchers reverse hall coefficient -- medieval mail armor inspired development of metamaterial with novel properties February 15th, 2017

Research reveals novel quantum state in strange insulating materials February 14th, 2017

Graphene foam gets big and tough: Rice University's nanotube-reinforced material can be shaped, is highly conductive February 13th, 2017

Researchers optimize the assembly of micro-/meso-/macroporous carbon for Li-S batteries February 13th, 2017

Announcements

Particles from outer space are wreaking low-grade havoc on personal electronics February 19th, 2017

Liquid metal nano printing set to revolutionize electronics: Creating integrated circuits just atoms thick February 18th, 2017

Engineers shrink microscope to dime-sized device February 17th, 2017

Francis Alexander Named Deputy Director of Brookhaven Lab's Computational Science Initiative February 16th, 2017

Tools

Engineers shrink microscope to dime-sized device February 17th, 2017

Metamaterial: Mail armor inspires physicists: KIT researchers reverse hall coefficient -- medieval mail armor inspired development of metamaterial with novel properties February 15th, 2017

Cedars-Sinai, UCLA Scientists Use New ‘Blood Biopsies’ With Experimental Device to Speed Cancer Diagnosis and Predict Disease Spread: Leading-Edge Research Is Part of National Cancer Moonshot Initiative February 13th, 2017

Meta-lenses bring benchtop performance to small, hand-held spectrometer: Game-changing nanostructure-based lenses allow smaller devices, increased functionality February 9th, 2017

Research partnerships

Graphene foam gets big and tough: Rice University's nanotube-reinforced material can be shaped, is highly conductive February 13th, 2017

Cedars-Sinai, UCLA Scientists Use New ‘Blood Biopsies’ With Experimental Device to Speed Cancer Diagnosis and Predict Disease Spread: Leading-Edge Research Is Part of National Cancer Moonshot Initiative February 13th, 2017

Highly sensitive gas sensors for volatile organic compound detection February 6th, 2017

UCLA physicists map the atomic structure of an alloy: Researchers measured the coordinates of more than 23,000 atoms in a technologically important material February 3rd, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project