Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Materials research with antiparticles: Unravelling the secret of nanocrystalline materials

Nanocrystalline materials rely on imperfection. Structural defects are responsible for their unusual material properties. Copyright Graz University of Technology
Nanocrystalline materials rely on imperfection. Structural defects are responsible for their unusual material properties. Copyright Graz University of Technology

Abstract:
Certain structural defects in materials are what make innovative nanocrystalline bulk metals very hard and yet readily malleable. As these defects are found at the atomic level of the metal structure they are difficult to investigate in experiments. However, Austrian scientists have recently taken a significant step towards understanding such atomic defects. They succeeded in doing so by combining two special methods in a project funded by the Austrian Science Fund FWF. The results have now been published in the renowned scientific journal Physical Review Letters.

Materials research with antiparticles: Unravelling the secret of nanocrystalline materials

Vienna | Posted on November 29th, 2010

Extremely hard but still easily malleable - the properties of the so-called nanocrystalline bulk metals give rise to many questions among physicists. Scientists at Graz University of Technology have finally managed to answer some of those questions through experiments.

The scientists set out to monitor the structural changes in the metals in real time. They were thus able to conclude that atomic defects are a central cause of the interesting physical material properties.

Nanocrystalline metals consist of countless crystallites (grains), which are mostly smaller than one hundred nanometres - and the smaller the grain, the more solid is the metal. The structure of nanocrystalline metals is actually very regular: the atoms in the grains lie tightly packed in rank and file. However, when the metals are produced, atomic defects are involuntarily introduced which disturb the atomic order within the grains. For example, certain layers are not located directly on top of each other: some atoms are missing or rows are misaligned. Austrian materials physicists have now produced the first experimental evidence of these effects, which are closely related to the mechanical properties. They have published their results in the journal Physical Review Letters, where they describe how the combination of two special methods can be used to closely examine atomic defects.

Spy attacks on metals

As atomic defects on the nanoscale are difficult to spot, the scientists worked with so-called positrons. Dr. Wolfgang Sprengel from Graz University of Technology explains: "A positron is a subatomic particle that is almost identical to the electron, with one difference: it is positively charged. If a positron and an electron meet, they annihilate each other. In the places where atomic defects are present, there are fewer electrons and therefore fewer occurrences of annihilation. The positrons therefore serve as spies that deliver detailed information about the atomic defects. We have used this effect to analyse the fast processes of atomic defects in metals." To carry out the experiments, the scientists availed themselves of the FRM II research reactor at the Technische Universität München (TUM), where they deployed the positron beam with the highest intensity in the world.

Two methods, one result

In addition to the positron-electron annihilation, macroscopic length-change measurements were made upon annihilation of the defects - by means of dilatometry. This combination of dilatometry and positron-electron annihilation is a first of its kind and it delivered the evidence that some of the seemingly mysterious physical properties of the nanocrystalline bulk metals can be attributed to these structural defects. The cause of the defects can be found in the production background of the metals. Nanocrystalline bulk metals are produced using very complex methods - such as high-pressure torsion (Erich Schmidt Institute Leoben) - which give rise to the atomic defects.

The FWF project headed by Dr. Roland Würschum is carried out in close cooperation with the University of Vienna and the Erich Schmidt Institute in Leoben, and is also closely linked to the National Research Network (NFN) on nanocrystalline bulk metals. The project has enabled a better understanding of fundamental principles, which is essential for the application of these innovative materials.

Original publikation:
In situ probing of fast defect annealing in Cu and Ni with a high-intensity positron beam. B. Oberdorfer, E-M. Steyskal, W. Sprengel, W. Puff, P. Pikart, C. Hugenschmidt, M. Zehetbauer, R. Pippan, R. Wüschum. Published September 28, 2010. Physical Review Letters 105, 146101. DOI: 10.1103/PhysRevLett.105.146101.

####

For more information, please click here

Contacts:
Scientific Contact
Univ.-Prof. Dr. Roland Würschum
Technische Universität Graz
Institut für Materialphysik
Petersgasse 16/IV
8010 Graz
T +43 / 316 / 873 - 8481
E

Austrian Science Fund FWF
Mag. Stefan Bernhardt
Haus der Forschung
Sensengasse 1
1090 Vienna, Austria
T +43 / 1 / 505 67 40 - 8111
E

Copy Editing & Distribution
PR&D – Public Relations for Research & Education
Mariannengasse 8
1090 Vienna, Austria
T +43 / 1 / 505 70 44
E
W www.prd.at

Copyright © Austrian Science Fund

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Toyocolor to Launch New Carbon Nanotube Materials at nano tech 2015 January 24th, 2015

NANOPOSTER 2015 - 5th Virtual Nanotechnology Conference - call for abstracts January 24th, 2015

Nanosensor Used for Simultaneous Determination of Effective Tea Components January 24th, 2015

The latest fashion: Graphene edges can be tailor-made: Rice University theory shows it should be possible to tune material's properties January 24th, 2015

Govt.-Legislation/Regulation/Funding/Policy

The latest fashion: Graphene edges can be tailor-made: Rice University theory shows it should be possible to tune material's properties January 24th, 2015

Scientists 'bend' elastic waves with new metamaterials that could have commercial applications: Materials could benefit imaging and military enhancements such as elastic cloaking January 23rd, 2015

Harper Government Supports Research Innovation in Western Canada January 22nd, 2015

EnvisioNano: An image contest hosted by the National Nanotechnology Initiative (NNI) January 22nd, 2015

Academic/Education

Rice's Naomi Halas to direct Smalley Institute: Optics pioneer will lead Rice's multidisciplinary science institute January 15th, 2015

SUNY Board Appoints Dr. Alain Kaloyeros as Founding President of SUNY Polytechnic Institute January 13th, 2015

CNSE's Smart System Technology & Commercialization Center Successfully Recertifies as ISO 9001:2008 January 12th, 2015

SUNY Poly Now Accepting Applications to the Colleges of Nanoscale Science and Engineering for Fall 2015: Full Scholarships Available to Incoming CNSE Students January 7th, 2015

Discoveries

Nanosensor Used for Simultaneous Determination of Effective Tea Components January 24th, 2015

The latest fashion: Graphene edges can be tailor-made: Rice University theory shows it should be possible to tune material's properties January 24th, 2015

Iranian Scientists Produce Graphene-Based Oxygen Sensor January 23rd, 2015

Silver nanowires demonstrate unexpected self-healing mechanism: The material has potential for flexible electronics January 23rd, 2015

Materials/Metamaterials

Toyocolor to Launch New Carbon Nanotube Materials at nano tech 2015 January 24th, 2015

The latest fashion: Graphene edges can be tailor-made: Rice University theory shows it should be possible to tune material's properties January 24th, 2015

Silver nanowires demonstrate unexpected self-healing mechanism: The material has potential for flexible electronics January 23rd, 2015

Scientists 'bend' elastic waves with new metamaterials that could have commercial applications: Materials could benefit imaging and military enhancements such as elastic cloaking January 23rd, 2015

Announcements

Toyocolor to Launch New Carbon Nanotube Materials at nano tech 2015 January 24th, 2015

NANOPOSTER 2015 - 5th Virtual Nanotechnology Conference - call for abstracts January 24th, 2015

Nanosensor Used for Simultaneous Determination of Effective Tea Components January 24th, 2015

The latest fashion: Graphene edges can be tailor-made: Rice University theory shows it should be possible to tune material's properties January 24th, 2015

Tools

Graphene brings quantum effects to electronic circuits January 22nd, 2015

EnvisioNano: An image contest hosted by the National Nanotechnology Initiative (NNI) January 22nd, 2015

New Molecular Beam Epitaxy deposition equipment at the ICN2 January 22nd, 2015

New method to generate arbitrary optical pulses January 21st, 2015

Research partnerships

Wearable sensor clears path to long-term EKG, EMG monitoring January 20th, 2015

Graphene enables all-electrical control of energy flow from light emitters: First signatures of graphene plasmons at telecommunications wavelength revealed January 20th, 2015

Charge instability detected across all types of copper-based superconductors: Findings may help researchers synthesize materials that can superconduct at room temperature January 16th, 2015

Gold nanoparticles show promise for early detection of heart attacks: NYU School of Engineering Professors collaborate with researchers from Peking University on a new test strip January 15th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE