Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Virginia Tech engineers introduce thermotherapy as a chemotherapy alternative

Ishwar Puri
Ishwar Puri

Abstract:
Using hyperthermia, Virginia Tech engineering researchers and a colleague from India unveiled a new method to target and destroy cancerous cells at the 63rd annual meeting of the American Physical Society held today in Long Beach, Calif.

Virginia Tech engineers introduce thermotherapy as a chemotherapy alternative

Blacksburg, VA | Posted on November 23rd, 2010

The cancer treatment uses hyperthermia to elevate the temperature of tumor cells, while keeping the surrounding healthy tissue at a lower degree of body heat. The investigators used both in vitro and in vivo experiments to confirm their findings.

The collaborators are Monrudee Liangruksa, a Virginia Tech graduate student in engineering science and mechanics, and her thesis adviser, Ishwar Puri, professor and head of the department, along with Ranjan Ganguly of the department of power engineering at Iadavpur Univesity, Kolkata, India.

Liangruska of Bangkok, Thailand, presented the paper at the meeting.

In an interview prior to the presentation, Puri explained to further perfect the technique they used ferrofluids to induce the hyperthermia. A ferrofluid is a liquid that becomes strongly magnetized in the presence of a magnetic field. The magnetic nanoparticles are suspended in the non-polar state.

"These fluids can then be magnetically targeted to cancerous tissues after intravenous application," Puri said. "The magnetic nanoparticles, each billionths of a meter in size, seep into the tissue of the tumor cell due to the high permeability of these vessels."

Afterwards, the magnetic nanoparticles are heated by exposing the tumor to a high frequency alternating magnetic field, causing the tissue's death by heating. This process is called magnetic fluid hyperthermia and they have nicknamed it thermotherapy.

Temperatures in the range of 41 to 45 degrees Celsius are enough to slow or halt the growth of cancerous tissue. However, without the process of magnetic fluid hyperthermia, these temperatures also destroy healthy cells.

"The ideal hyperthermia treatment sufficiently increases the temperature of the tumor cells for about 30 minutes while maintaining the healthy tissue temperature below 41 degrees Celsius," Puri said. "Our ferrofluid-based thermotherapy can be also accomplished through thermoablation, which typically heats tissues up to 56°C to cause their death, coagulation, or carbonization by exposure to a noninvasive radio frequency, alternating current magnetic field. Local heat transfer from the nanoparticles increases the tissue temperature and ruptures the cell membranes."

Puri added that testing showed iron oxide nanoparticles are "the most biocompatible agents for magnetic fluid hyperthermia." Platinum and nickel also act as magnetic nanoparticles but they "are toxic and vulnerable" when exposed to oxygen.

The researchers plan to test their analytical approach by conducting experiments on various cancer cells in collaboration with Elankumaran Subbiah of the Virginia-Maryland School of Veterinary Medicine. A senior design team consisting of five engineering science and mechanics undergraduate Virginia Tech students is fabricating an apparatus for these tests.

####

About Virginia Tech College of Engineering
The College of Engineering at Virginia Tech is internationally recognized for its excellence in 14 engineering disciplines and computer science. The college's 6,000 undergraduates benefit from an innovative curriculum that provides a "hands-on, minds-on" approach to engineering education, complementing classroom instruction with two unique design-and-build facilities and a strong Cooperative Education Program. With more than 50 research centers and numerous laboratories, the college offers its 2,000 graduate students opportunities in advanced fields of study such as biomedical engineering, state-of-the-art microelectronics, and nanotechnology. Virginia Tech, the most comprehensive university in Virginia, is dedicated to quality, innovation, and results to the commonwealth, the nation, and the world.

For more information, please click here

Contacts:
Lynn A Nystrom
Director, News & External Relations
(540) 231-4371


Copyright © Virginia Tech

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

UCLA chemists synthesize narrow ribbons of graphene using only light and heat: Tiny structures could be next-generation solution for smaller electronic devices December 8th, 2017

Untangling DNA: Researchers filter the entropy out of nanopore measurements December 8th, 2017

Device makes power conversion more efficient: New design could dramatically cut energy waste in electric vehicles, data centers, and the power grid December 8th, 2017

JPK Instruments announce partnership with Swiss company, Cytosurge AG. The partnership makes Cytosurge’s FluidFM® technology available on the JPK NanoWizard® AFM platform December 8th, 2017

Possible Futures

UCLA chemists synthesize narrow ribbons of graphene using only light and heat: Tiny structures could be next-generation solution for smaller electronic devices December 8th, 2017

Untangling DNA: Researchers filter the entropy out of nanopore measurements December 8th, 2017

Device makes power conversion more efficient: New design could dramatically cut energy waste in electric vehicles, data centers, and the power grid December 8th, 2017

Creating a new kind of metallic glass December 7th, 2017

Academic/Education

Luleå University of Technology is using the Deben CT5000TEC stage to perform x-ray microtomography experiments with the ZEISS Xradia 510 Versa to understand deformation and strain inside inhomogeneous materials November 7th, 2017

Park Systems Announces the Grand Opening of the Park NanoScience Center at SUNY Polytechnic Institute November 3rd, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Nanomedicine

Untangling DNA: Researchers filter the entropy out of nanopore measurements December 8th, 2017

Arrowhead Presents New Clinical Data Demonstrating a Sustained Host Response in Hepatitis B Patients Following RNAi Therapy — Up to 5.0 log10 reduction in HBsAg observed; data presented at HEP DART 2017 — December 6th, 2017

Copper will replace toxic palladium and expensive platinum in the synthesis of medications: The effectiveness of copper nanoparticles as a catalyst has been proven December 5th, 2017

Researchers advance technique to detect ovarian cancer: Rice, MD Anderson use fluorescent carbon nanotube probes to achieve first in vivo success November 30th, 2017

Announcements

UCLA chemists synthesize narrow ribbons of graphene using only light and heat: Tiny structures could be next-generation solution for smaller electronic devices December 8th, 2017

Untangling DNA: Researchers filter the entropy out of nanopore measurements December 8th, 2017

Device makes power conversion more efficient: New design could dramatically cut energy waste in electric vehicles, data centers, and the power grid December 8th, 2017

JPK Instruments announce partnership with Swiss company, Cytosurge AG. The partnership makes Cytosurge’s FluidFM® technology available on the JPK NanoWizard® AFM platform December 8th, 2017

Research partnerships

Wheat gets boost from purified nanotubes: Rice University toxicity study shows plant growth enhanced by -- but only by -- purified nanotubes December 6th, 2017

Copper will replace toxic palladium and expensive platinum in the synthesis of medications: The effectiveness of copper nanoparticles as a catalyst has been proven December 5th, 2017

Researchers advance technique to detect ovarian cancer: Rice, MD Anderson use fluorescent carbon nanotube probes to achieve first in vivo success November 30th, 2017

Tiny robots step closer to treating hard-to-reach parts of the body November 25th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project