Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > A New Twist for Nanopillar Light Collectors

On the left a schematic of a germanium nanopillar array embedded in an alumina foil membrane; on the right are cross-sectional SEM images of a blank alumina membrane with dual-diameter pores; inset shows germanium nanopillars after growth. (Images courtesy of Ali Javey)
On the left a schematic of a germanium nanopillar array embedded in an alumina foil membrane; on the right are cross-sectional SEM images of a blank alumina membrane with dual-diameter pores; inset shows germanium nanopillars after growth. (Images courtesy of Ali Javey)

Abstract:
The nanopillar story has taken a new twist and the future for these materials now looks brighter than ever.

A New Twist for Nanopillar Light Collectors

Berkeley, CA | Posted on November 17th, 2010

Sunlight represents the cleanest, greenest and far and away most abundant of all energy sources, and yet its potential remains woefully under-utilized. High costs have been a major deterrant to the large-scale applications of silicon-based solar cells. Nanopillars - densely packed nanoscale arrays of optically active semiconductors - have shown potential for providing a next generation of relatively cheap and scalable solar cells, but have been hampered by efficiency issues. The nanopillar story, however, has taken a new twist and the future for these materials now looks brighter than ever.

"By tuning the shape and geometry of highly ordered nanopillar arrays of germanium or cadmium sulfide, we have been able to drastically enhance the optical absorption properties of our nanopillars," says Ali Javey, a chemist who holds joint appointments with the Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California (UC) at Berkeley.

Javey, a faculty scientist with Berkeley Lab's Materials Sciences Division and a UC Berkeley professor of electrical engineering and computer science, has been at the forefront of nanopillar research. He and his group were the first to demonstrate a technique by which cadmium sulfide nanopillars can be mass-produced in large-scale flexible modules. In this latest work, they were able to produce nanopillars that absorb light as well or even better than commercial thin-film solar cells, using far less semiconductor material and without the need for anti-reflective coating.

"To enhance the broad-band optical absorption efficiency of our nanopillars we used a novel dual-diameter structure that features a small (60 nanometers) diameter tip with minimal reflectance to allow more light in, and a large (130 nanometers) diameter base for maximal absorbtion to enable more light to be converted into electricity," Javey says. "This dual-diameter structure absorbed 99-percent of incident visible light, compared to the 85 percent absorbtion by our earlier nanopillars, which had the same diameter along their entire length."

Theoretical and experimental works have shown that 3-D arrays of semiconductor nanopillars - with well-defined diameter, length and pitch - excel at trapping light while using less than half the semiconductor material required for thin-film solar cells made of compound semiconductors, such as cadmium telluride, and about one-percent of the material used in solar cells made from bulk silicon. But until the work of Javey and his research group, fabricating such nanopillars was a complex and cumbersome procedure.

Javey and his colleagues fashioned their dual diameter nanopillars from molds they made in 2.5 millimeter-thick alumina foil. A two-step anodization process was used to create an array of one micrometer deep pores in the mold with dual diameters - narrow at the top and broad at the bottom. Gold particles were then deposited into the pores to catalyze the growth of the semiconductor nanopillars.

"This process enables fine control over geometry and shape of the single-crystalline nanopillar arrays, without the use of complex epitaxial and/or lithographic processes," Javey says. "At a height of only two microns, our nanopillar arrays were able to absorb 99-percent of all photons ranging in wavelengths between 300 to 900 nanometers, without having to rely on any anti-reflective coatings."

The germanium nanopillars can be tuned to absorb infrared photons for highly sensitive detectors, and the cadmium sulfide/telluride nanopillars are ideal for solar cells. The fabrication technique is so highly generic, Javey says, it could be used with numerous other semiconductor materials as well for specific applications. Recently, he and his group demonstrated that the cross-sectional portion of the nanopillar arrays can also be tuned to assume specific shapes - square, rectangle or circle - simply by changing the shape of the template.

"This presents yet another degree of control in the optical absorption properties of nanopillars," Javey says.

Javey's dual-diameter nanopillar research was partially funded through the National Science Foundation's Center of Integrated Nanomechanical Systems (COINS) and through Berkeley Lab LDRD funds.

A paper describing this research appears on-line in the journal NANO Letters under the title "Ordered Arrays of Dual-Diameter Nanopillars for Maximized Optical Absorption." Co-authoring the paper with Javey were Zhiyong Fan, Rehan Kapadia, Paul Leu,Xiaobo Zhang, Yu-Lun Chueh, Kuniharu Takei, Kyoungsik Yu, Arash Jamshidi, Asghar Rathore, Daniel Ruebusch and Ming Wu.

For more about the research of Ali Javey, visit his Website at nano.eecs.berkeley.edu

####

About Berkeley Lab
Berkeley Lab is a U.S. Department of Energy national laboratory located in Berkeley, California. It conducts unclassified scientific research for DOE’s Office of Science and is managed by the University of California. Visit our Website at www.lbl.gov

For more information, please click here

Contacts:
Lynn Yarris
(510) 486-5375

Copyright © Berkeley Lab

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Nanoparticle exposure can awaken dormant viruses in the lungs January 17th, 2017

Nanoscale view of energy storage January 16th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

Thin films

New material with ferroelectricity and ferromagnetism may lead to better computer memory December 21st, 2016

ANU invention to inspire new night-vision specs December 7th, 2016

Ultra-thin ferroelectric material for next-generation electronics October 12th, 2016

Continuous roll-process technology for transferring and packaging flexible LSI August 29th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Nanoscale view of energy storage January 16th, 2017

Chemistry on the edge: Experiments at Berkeley Lab confirm that structural defects at the periphery are key in catalyst function January 13th, 2017

Recreating conditions inside stars with compact lasers: Scientists offer a new path to creating the extreme conditions found in stars, using ultra-short laser pulses irradiating nanowires January 12th, 2017

Deciphering the beetle exoskeleton with nanomechanics: Understanding exoskeletons could lead to new, improved artificial materials January 12th, 2017

Possible Futures

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Nanoscale view of energy storage January 16th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Academic/Education

Oxford Nanoimaging report on how the Nanoimager, a desktop microscope delivering single molecule, super-resolution performance, is being applied at the MRC Centre for Molecular Bacteriology & Infection November 22nd, 2016

The University of Applied Sciences in Upper Austria uses Deben tensile stages as an integral part of their computed tomography research and testing facility October 18th, 2016

Enterprise In Space Partners with Sketchfab and 3D Hubs for NewSpace Education October 13th, 2016

New Agricultural Research Center Debuts at UCF October 12th, 2016

Announcements

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Nanoparticle exposure can awaken dormant viruses in the lungs January 17th, 2017

Nanoscale view of energy storage January 16th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

Energy

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Stability challenge in perovskite solar cell technology: New research reveals intrinsic instability issues of iodine-containing perovskite solar cells December 26th, 2016

Nanoscale 'conversations' create complex, multi-layered structures: New technique leverages controlled interactions across surfaces to create self-assembled materials with unprecedented complexity December 22nd, 2016

Safe and inexpensive hydrogen production as a future energy source: Osaka University researchers develop efficient 'green' hydrogen production system that operates at room temperature in air December 21st, 2016

Solar/Photovoltaic

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Stability challenge in perovskite solar cell technology: New research reveals intrinsic instability issues of iodine-containing perovskite solar cells December 26th, 2016

Going green with nanotechnology December 21st, 2016

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project