Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > DNA Weaving

DNA origami gets large: A double-layer DNA-origami tile with two orthogonal domains underwent self-assembly into well-ordered 2D DNA arrays with edge dimensions of 2¨C3 ¦Ìm (see schematic representation and AFM image). This size is likely to be large enough to connect bottom-up methods of patterning with top-down approaches.
DNA origami gets large: A double-layer DNA-origami tile with two orthogonal domains underwent self-assembly into well-ordered 2D DNA arrays with edge dimensions of 2¨C3 ¦Ìm (see schematic representation and AFM image). This size is likely to be large enough to connect bottom-up methods of patterning with top-down approaches.

Abstract:
Two-dimensional crystals from DNA origami tiles

DNA Weaving

Weinheim, Germany | Posted on November 16th, 2010

DNA is more than just a carrier for our genetic information; DNA is also an outstanding nanoscale building material, as researchers led by Ned Seeman discovered thirty years ago. Seeman and his colleagues at the New York University (USA) have now used cross-shaped DNA tiles to produce an amazingly large grid structure that resembles woven fabric. As the researchers report in the journal Angewandte Chemie, these two-dimensional crystals attain dimensions of about 2¡Á3 micrometers.

The specific pairing of complementary bases makes DNA an ideal nanoscale building component. It is possible to incorporate particular base sequences that specifically bind to their counterparts. These are called ¡°sticky ends¡±, and can be used to assemble tailored structures. Many nanostructures and nanomachines have previously been made from DNA. This technology experienced an upsurge a few years ago because of a new twist: the DNA origami technique developed by Paul Rothemund. As in origami, the Japanese art of paper folding, a long single strand of DNA is folded into a desired three-dimensional shape through short synthetic DNA oligonucleotides.

Seeman and his co-workers have also made use of this technique. They used this origami method to fold the DNA into the shapes they needed: cross-shaped tiles. The crosses consist of two mutually orthogonal overlapping strips, like two plasters stuck on top of each other to make a cross. On the four sides of the cross there are several sticky ends; the sticky ends opposite each other are identical. The researchers used two different sets of origami crosses with different sticky ends. These ends are designed so that the crosses bind together in an alternating pattern through a self-organization process¡ªsuch that the lower strip of one cross is always bound to the upper strip of its neighbor. This results in a two-dimensional structure that has a lattice-like woven appearance when viewed through an electron microscope. The alternating construction of upward and downward curved crosses is necessary to produce a planar surface. Randomly assembled crosses often lead to tubular structures.

¡°Our new approach could smooth the way for the industrial production of nanostructures through molecular self-organization processes,¡± hopes Seeman.

Author: Nadrian C. Seeman, New York University (USA), chemistry.fas.nyu.edu/object/nadriancseeman.html

Title: Crystalline Two-Dimensional DNA Origami Arrays

Angewandte Chemie International Edition, Permalink to the article: dx.doi.org/10.1002/anie.201005911

####

For more information, please click here

Copyright © Angewandte Chemie

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Enhancing the quantum sensing capabilities of diamond: Shooting electrons at diamonds can introduce quantum sensors into them November 24th, 2017

NanoSummit in Luxembourg: single wall carbon nanotubes have entered our lives as we approach a nanoaugmented future November 23rd, 2017

JPK reports on the exciting research in the School of Medicine at Sungkyunkwan University (SKKU), Suwon, South Korea using the NanoWizard® ULTRA Speed AFM to understand the binding of transcription factor Sox2 with super enhancers November 23rd, 2017

Precision NanoSystems to host nanomedicines roundtable November 23rd, 2017

Possible Futures

Enhancing the quantum sensing capabilities of diamond: Shooting electrons at diamonds can introduce quantum sensors into them November 24th, 2017

Fine felted nanotubes : Research team of Kiel University develops new composite material made of carbon nanotubes November 22nd, 2017

Report highlights opportunities and risks associated with synthetic biology and bioengineering November 22nd, 2017

Nano-watch has steady hands November 21st, 2017

Academic/Education

Luleå University of Technology is using the Deben CT5000TEC stage to perform x-ray microtomography experiments with the ZEISS Xradia 510 Versa to understand deformation and strain inside inhomogeneous materials November 7th, 2017

Park Systems Announces the Grand Opening of the Park NanoScience Center at SUNY Polytechnic Institute November 3rd, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Self Assembly

Physicists gain new insights into nanosystems with spherical confinement: Enormous potential for the targeted delivery of pharmaceutical agents and the creation of tailored nanoparticles July 27th, 2017

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

Nanotubes that build themselves April 14th, 2017

Nanocages for gold particles: what is happening inside? March 16th, 2017

Nanomedicine

JPK reports on the exciting research in the School of Medicine at Sungkyunkwan University (SKKU), Suwon, South Korea using the NanoWizard® ULTRA Speed AFM to understand the binding of transcription factor Sox2 with super enhancers November 23rd, 2017

Precision NanoSystems to host nanomedicines roundtable November 23rd, 2017

Fine felted nanotubes : Research team of Kiel University develops new composite material made of carbon nanotubes November 22nd, 2017

Nanoparticles could allow for faster, better medicine: Exposure of nanoparticles in the body allows for more effective delivery November 20th, 2017

Announcements

Enhancing the quantum sensing capabilities of diamond: Shooting electrons at diamonds can introduce quantum sensors into them November 24th, 2017

NanoSummit in Luxembourg: single wall carbon nanotubes have entered our lives as we approach a nanoaugmented future November 23rd, 2017

JPK reports on the exciting research in the School of Medicine at Sungkyunkwan University (SKKU), Suwon, South Korea using the NanoWizard® ULTRA Speed AFM to understand the binding of transcription factor Sox2 with super enhancers November 23rd, 2017

Precision NanoSystems to host nanomedicines roundtable November 23rd, 2017

Industrial

A new way to mix oil and water: Condensation-based method developed at MIT could create stable nanoscale emulsions November 8th, 2017

Researchers greenlight gas detection at room temperature October 26th, 2017

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Injecting electrons jolts 2-D structure into new atomic pattern: Berkeley Lab study is first to show potential of energy-efficient next-gen electronic memory October 13th, 2017

Nanobiotechnology

JPK reports on the exciting research in the School of Medicine at Sungkyunkwan University (SKKU), Suwon, South Korea using the NanoWizard® ULTRA Speed AFM to understand the binding of transcription factor Sox2 with super enhancers November 23rd, 2017

Precision NanoSystems to host nanomedicines roundtable November 23rd, 2017

Fine felted nanotubes : Research team of Kiel University develops new composite material made of carbon nanotubes November 22nd, 2017

Nanoparticles could allow for faster, better medicine: Exposure of nanoparticles in the body allows for more effective delivery November 20th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project