Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Nanomaterial for medicine and energy

A new type of nanoparticle resembling the six-pointed Star of David (Magen David) that is the symbol on the flag of Israel has been discovered by researchers at the Hebrew University of Jerusalem.
A new type of nanoparticle resembling the six-pointed Star of David (Magen David) that is the symbol on the flag of Israel has been discovered by researchers at the Hebrew University of Jerusalem.

Abstract:
New nanomaterial, shaped like Stars of David, discovered at Hebrew University, could open way for medical, clean energy applications

Nanomaterial for medicine and energy

Israel | Posted on November 14th, 2010

A new type of nanoparticle resembling the six-pointed Star of David (Magen David) that is the symbol on the flag of Israel has been discovered by researchers at the Hebrew University of Jerusalem. The discovery, the researchers say, may lead to new ways for sensing of glucose in diagnosing diabetes or provide a catalyst to capture the sun's energy and turn it into clean fuel.

Their work, they further believe, greatly contributes to understanding how hybrid nanoparticles form. Hybrid nanoparticles are systems which combine two or more different materials on the same particle in which the combination provides multi-functionality to the particle. The discovery of the Hebrew University scientists is described in an article published now online and in the October 2010 issue of the journal Nature Materials.

The new Star of David shaped particles, with sizes 10,000 times smaller than the width of a human hair, were discovered by the research group of Uri Banin, the Alfred and Erica Larisch Memorial Professor and the director of the Harvey M. Kruger Family Center for Nanoscience and Nanotechnology at the Hebrew University.

The researchers have been working to try and develop new nanoparticles made of two kinds of materials joined together. So far, scientists have only been aware of nanoparticles in which one material encapsulates the other (resembling an egg and a yolk), or where an island of one material forms on the other (much like the head of the match on a match-stick). This was not the case with the Star of David shapes.

Dr. Janet Macdonald, a postdoctoral fellow in Banin's group, worked on synthesizing nanoparticles combining copper sulfide, a common mineral with semiconducting properties, and ruthenium, a metal with exceptional chemical-catalytic properties. Instead of the expected ruthenium islands on the seed particles, what she saw in the pictures from the electron microscope were particles with surprising striped patterns and Star of David shapes.

What followed was the difficult task of figuring out the three-dimensional shape of the particles that could give such images. The mystery took months to solve and confirm by careful analysis and with the aid of Dr. Maya Bar Sadan and Dr. Lothar Houben of the Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons in Juelich, Germany.

The researchers generated a three-dimensional image of the tiny nanoparticles using a powerful electron microscope and found that the Stars of David are, remarkably, "nano-cages." The particles are nano-sized, hexagonal crystals, each with a tiny metal frame wrapping around and encasing them just like a bird's cage, but 100 million times smaller. Because the nano-cage is hexagonal, when looking at pictures of them from above, they appear as Stars of David. No one had ever seen hybrid nanoparticles form with such a cage structure before.

Exploration into the possible applications for the nano Stars of David has just begun, and already they have shown that they are not just beautiful; the composition and the unique cage shape makes them useful. The first application demonstrated was in the use of the nano-cages as sensors. The researchers coated an electrode with the Star of David nano-cages and proved that it is possible to detect with the new device minute quantities of hydrogen peroxide. Uncaged copper sulfide particles alone were not sensitive, and remarkably, the addition of the metal frame boosted the electrical signal of detection 200 fold. Sensing peroxide is a first step towards new and better sensors for glucose, which has important medical implications, including for diabetes diagnostics.

But Banin and his researchers have wider aspirations for the nano Stars of David: testing these materials as sensors for other medical and environmental applications, and exploring if they can be used as photocatalysts for using sunlight to make "green fuel."

####

For more information, please click here

Copyright © Hebrew University of Jerusalem

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Harvey M. Kruger Family Center for Nanoscience and Nanotechnology

Related News Press

News and information

GrapheneCanada 2016 International Conference: Recent advances in technology developments and business opportunities in graphene commercialization August 31st, 2016

FEI Celebrates Shipment of 1,000th Helios DualBeam System: FEIís Helios Family has lead the DualBeam technology race and is widely used across the semiconductor, materials science, life sciences and oil & gas industries August 31st, 2016

Colors from darkness: Researchers develop alternative approach to quantum computing August 31st, 2016

Diamonds and quantum information processing on the nano scale August 31st, 2016

Possible Futures

Colors from darkness: Researchers develop alternative approach to quantum computing August 31st, 2016

Device to control 'color' of electrons in graphene provides path to future electronics August 31st, 2016

Graphene key to growing 2-dimensional semiconductor with extraordinary properties August 30th, 2016

Nanocatalysis for organic chemistry: This research article by Dr. Qien Xu et al. is published in Current Organic Chemistry, Volume 20, Issue 19, 2016 August 30th, 2016

Academic/Education

AIM Photonics Announces Release of Process Design Kit (PDK) for Integrated Silicon Photonics Design August 25th, 2016

Nanotech Security Featured by Simon Fraser University: Company's Anti-Counterfeiting Technology Developed With the Help of University's 4D LABS Materials Research Institute August 21st, 2016

W.M. Keck Foundation awards Cal State LA a $375,000 research and education grant August 4th, 2016

Thomas Swan and NGI announce unique partnership July 28th, 2016

Nanomedicine

Particle Works launches range of high quality magnetic nanoparticles August 31st, 2016

Designing ultrasound tools with Lego-like proteins August 29th, 2016

Nanofiber scaffolds demonstrate new features in the behavior of stem and cancer cells August 25th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

Sensors

Graphene key to growing 2-dimensional semiconductor with extraordinary properties August 30th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Down to the wire: ONR researchers and new bacteria August 18th, 2016

'Sniffer plasmons' could detect explosives: Scientists have proposed a graphene-based spaser that can detect even small amounts of various substances, including explosives August 16th, 2016

Discoveries

FEI Celebrates Shipment of 1,000th Helios DualBeam System: FEIís Helios Family has lead the DualBeam technology race and is widely used across the semiconductor, materials science, life sciences and oil & gas industries August 31st, 2016

Colors from darkness: Researchers develop alternative approach to quantum computing August 31st, 2016

Diamonds and quantum information processing on the nano scale August 31st, 2016

Device to control 'color' of electrons in graphene provides path to future electronics August 31st, 2016

Announcements

GrapheneCanada 2016 International Conference: Recent advances in technology developments and business opportunities in graphene commercialization August 31st, 2016

FEI Celebrates Shipment of 1,000th Helios DualBeam System: FEIís Helios Family has lead the DualBeam technology race and is widely used across the semiconductor, materials science, life sciences and oil & gas industries August 31st, 2016

Colors from darkness: Researchers develop alternative approach to quantum computing August 31st, 2016

Diamonds and quantum information processing on the nano scale August 31st, 2016

Energy

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Lehigh engineer discovers a high-speed nano-avalanche: New findings published in the Journal of Electrochemical Society about the process involving transformations in glass that occur under intense electrical and thermal conditions could lead the way to more energy-efficient glas August 24th, 2016

New flexible material can make any window 'smart' August 23rd, 2016

Researchers reduce expensive noble metals for fuel cell reactions August 22nd, 2016

Nanobiotechnology

Particle Works launches range of high quality magnetic nanoparticles August 31st, 2016

Designing ultrasound tools with Lego-like proteins August 29th, 2016

Analog DNA circuit does math in a test tube: DNA computers could one day be programmed to diagnose and treat disease August 25th, 2016

Nanofiber scaffolds demonstrate new features in the behavior of stem and cancer cells August 25th, 2016

Solar/Photovoltaic

Let's roll: Material for polymer solar cells may lend itself to large-area processing: 'Sweet spot' for mass-producing polymer solar cells may be far larger than dictated by the conventional wisdom August 12th, 2016

NREL technique leads to improved perovskite solar cells August 11th, 2016

Making a solar energy conversion breakthrough with help from a ferroelectrics pioneer: Philadelphia-based team shows how a ferroelectric insulator can surpass shockley-queisser limit August 9th, 2016

Tiny high-performance solar cells turn power generation sideways August 5th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic