Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > A greener way to grow carbon nanotubes

Graphic: Christine Daniloff
Graphic: Christine Daniloff

Abstract:
Study suggests new way for manufacturers to minimize environmental impact of carbon nanotube production

By Morgan Bettex, MIT News Office

A greener way to grow carbon nanotubes

Cambridge, MA | Posted on November 11th, 2010

Given their size, strength and electrical properties, carbon nanotubes — tiny, hollow cylinders made of carbon atoms — hold promise for a range of applications in electronics, medicine and other fields. Despite industrial development of nanotubes in recent years, however, very little is known about how they form or the environmental impacts of their manufacture.

It turns out that one process commonly used to produce carbon nanotubes, or CNTs, may release several hundred tons of chemicals, including greenhouse gases and hazardous air pollutants, into the air each year. In a paper published last week on the ACS Nano website, the researchers report that in experiments, removing one step in that process — a step that involves heating carbon-based gases and adding key reactive "ingredients" — reduced emissions of harmful by-products at least tenfold and, in some cases, by a factor of 100. It also cut the amount of energy used in the process by half.

"We were able to do all of this and still have good CNT growth," says Desiree Plata, who led the research between 2007 and 2009 as a doctoral student in MIT's joint program with the Woods Hole Oceanographic Institution. Now a visiting assistant professor in MIT's Departments of Aeronautics and Astronautics and Civil and Environmental Engineering (CEE), Plata collaborated on the paper with several MIT and University of Michigan researchers, including Philip Gschwend, Ford Professor of Engineering in CEE, and John Hart, a mechanical engineering professor at the University of Michigan. The study is part of a long-term effort to change the approach to material development so that environmental chemists work with the young CNT industry to develop methods to prevent or limit undesirable environmental consequences.

In their study, Plata and her colleagues analyzed a common CNT manufacturing process known as catalytic chemical vapor deposition. In this method, manufacturers combine hydrogen with a "feedstock gas," such as methane, carbon monoxide or ethylene. They then heat the combination in a reactor that contains a metal catalyst like nickel or iron, which then forms CNTs. The problem is that once the CNTs form, unreacted compounds (up to 97 percent of the initial feedstock) are often released into the air.

Turning off the heat

In a custom-made laboratory-scale reactor, the researchers heated hydrogen and ethylene, which is commonly used in high-volume CNT manufacturing, and then delivered it to a metal catalyst. They found that more than 40 compounds formed, including greenhouse gases like methane and toxic air pollutants like benzene.

The researchers suspected that not all of those compounds were essential for growing CNTs, and they knew that heating the feedstock gas plays a critical role in creating the dangerous compounds. So they combined unheated ethylene and hydrogen with several of the 40 compounds, one by one, to see which combination of compounds led to the best growth. They observed that certain alkynes, or molecules that have at least two carbon atoms stuck together with three distinct bonds, produced the best growth, while other compounds that are undesirable by-products, such as methane and benzene, did not.

Plata and her colleagues accomplished their dramatic reduction in both harmful emissions and energy consumption by impinging room-temperature alkynes, with ethylene and hydrogen, directly onto the metal catalyst, without heat. They also learned that they could reduce the amount of ethylene and hydrogen used by about 20 and 40 percent, respectively, and still achieve the same rate and quality of CNT growth. Plata says that while the results of lab experiments are hard to generalize, in a market that is expected to reach several billion dollars within several years, these changes could translate into "significant cost savings" for manufacturers.

Industry reaction

Although it's too soon for manufacturers to adopt the method presented in the paper, David Lashmore, vice president and chief technology officer of Concord, N.H.-based Nanocomp Technologies, says the method is something his company is willing to try as it looks for ways to minimize the environmental effects of its production process. "This is of high interest to us and could have a broad impact on our process economics," he says.

Plata points out that the MIT study analyzed only one of several feedstock gases used to make CNTs, and that the same analysis needs to be done for the others. But for her own part, she is now focusing on how CNTs form, trying to determine the precise interaction of the metal catalyst and the hydrocarbons in this process. Knowing the catalyst's role could help researchers manipulate CNTs' formation atom by atom — much more precisely than they can now, she says.

The study was funded by the Woods Hole Oceanographic Institution, the Arunas and Pam Chesonis Ignition Grant via the MIT Earth Systems Initiative and the MIT Martin Society of Fellows for Sustainability, the Nanomanufacturing Program of the National Science Foundation, Lockheed Martin Nanosystems and the University of Michigan Department of Mechanical Engineering and College of Engineering.

####

For more information, please click here

Copyright © MIT

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Nanocomp Technologies

Related News Press

News and information

Light and matter merge in quantum coupling: Rice University physicists probe photon-electron interactions in vacuum cavity experiments August 24th, 2016

New microchip demonstrates efficiency and scalable design: Increased power and slashed energy consumption for data centers August 24th, 2016

Tunneling nanotubes between neurons enable the spread of Parkinson's disease via lysosomes August 24th, 2016

University of Puerto Rico and NASA back in the news – XEI reports August 23rd, 2016

Govt.-Legislation/Regulation/Funding/Policy

Light and matter merge in quantum coupling: Rice University physicists probe photon-electron interactions in vacuum cavity experiments August 24th, 2016

New theory could lead to new generation of energy friendly optoelectronics: Researchers at Queen's University Belfast and ETH Zurich, Switzerland, have created a new theoretical framework which could help physicists and device engineers design better optoelectronics August 23rd, 2016

New flexible material can make any window 'smart' August 23rd, 2016

Researchers reduce expensive noble metals for fuel cell reactions August 22nd, 2016

Possible Futures

Light and matter merge in quantum coupling: Rice University physicists probe photon-electron interactions in vacuum cavity experiments August 24th, 2016

New microchip demonstrates efficiency and scalable design: Increased power and slashed energy consumption for data centers August 24th, 2016

Tunneling nanotubes between neurons enable the spread of Parkinson's disease via lysosomes August 24th, 2016

New theory could lead to new generation of energy friendly optoelectronics: Researchers at Queen's University Belfast and ETH Zurich, Switzerland, have created a new theoretical framework which could help physicists and device engineers design better optoelectronics August 23rd, 2016

Academic/Education

Nanotech Security Featured by Simon Fraser University: Company's Anti-Counterfeiting Technology Developed With the Help of University's 4D LABS Materials Research Institute August 21st, 2016

W.M. Keck Foundation awards Cal State LA a $375,000 research and education grant August 4th, 2016

Thomas Swan and NGI announce unique partnership July 28th, 2016

The NanoWizard® AFM from JPK is applied for interdisciplinary research at the University of South Australia for applications including smart wound healing and how plants can protect themselves from toxins July 26th, 2016

Nanotubes/Buckyballs/Fullerenes

Tunneling nanotubes between neurons enable the spread of Parkinson's disease via lysosomes August 24th, 2016

McMaster researchers resolve a problem that has been holding back a technological revolution August 18th, 2016

'Second skin' protects soldiers from biological and chemical agents August 5th, 2016

Carbon nanotube 'stitches' make stronger, lighter composites: Method to reinforce these materials could help make airplane frames lighter, more damage-resistant August 4th, 2016

Announcements

Light and matter merge in quantum coupling: Rice University physicists probe photon-electron interactions in vacuum cavity experiments August 24th, 2016

New microchip demonstrates efficiency and scalable design: Increased power and slashed energy consumption for data centers August 24th, 2016

Tunneling nanotubes between neurons enable the spread of Parkinson's disease via lysosomes August 24th, 2016

University of Puerto Rico and NASA back in the news – XEI reports August 23rd, 2016

Environment

Researchers watch catalysts at work August 19th, 2016

Down to the wire: ONR researchers and new bacteria August 18th, 2016

SLAC, Stanford gadget grabs more solar energy to disinfect water faster: Plopped into water, a tiny device triggers the formation of chemicals that kill microbes in minutes August 15th, 2016

'Liquid fingerprinting' technique instantly identifies unknown liquids: Ability to instantly identify unknown liquids in the field could aid first responders, improve plant safety August 4th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic