Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > A greener way to grow carbon nanotubes

Graphic: Christine Daniloff
Graphic: Christine Daniloff

Abstract:
Study suggests new way for manufacturers to minimize environmental impact of carbon nanotube production

By Morgan Bettex, MIT News Office

A greener way to grow carbon nanotubes

Cambridge, MA | Posted on November 11th, 2010

Given their size, strength and electrical properties, carbon nanotubes — tiny, hollow cylinders made of carbon atoms — hold promise for a range of applications in electronics, medicine and other fields. Despite industrial development of nanotubes in recent years, however, very little is known about how they form or the environmental impacts of their manufacture.

It turns out that one process commonly used to produce carbon nanotubes, or CNTs, may release several hundred tons of chemicals, including greenhouse gases and hazardous air pollutants, into the air each year. In a paper published last week on the ACS Nano website, the researchers report that in experiments, removing one step in that process — a step that involves heating carbon-based gases and adding key reactive "ingredients" — reduced emissions of harmful by-products at least tenfold and, in some cases, by a factor of 100. It also cut the amount of energy used in the process by half.

"We were able to do all of this and still have good CNT growth," says Desiree Plata, who led the research between 2007 and 2009 as a doctoral student in MIT's joint program with the Woods Hole Oceanographic Institution. Now a visiting assistant professor in MIT's Departments of Aeronautics and Astronautics and Civil and Environmental Engineering (CEE), Plata collaborated on the paper with several MIT and University of Michigan researchers, including Philip Gschwend, Ford Professor of Engineering in CEE, and John Hart, a mechanical engineering professor at the University of Michigan. The study is part of a long-term effort to change the approach to material development so that environmental chemists work with the young CNT industry to develop methods to prevent or limit undesirable environmental consequences.

In their study, Plata and her colleagues analyzed a common CNT manufacturing process known as catalytic chemical vapor deposition. In this method, manufacturers combine hydrogen with a "feedstock gas," such as methane, carbon monoxide or ethylene. They then heat the combination in a reactor that contains a metal catalyst like nickel or iron, which then forms CNTs. The problem is that once the CNTs form, unreacted compounds (up to 97 percent of the initial feedstock) are often released into the air.

Turning off the heat

In a custom-made laboratory-scale reactor, the researchers heated hydrogen and ethylene, which is commonly used in high-volume CNT manufacturing, and then delivered it to a metal catalyst. They found that more than 40 compounds formed, including greenhouse gases like methane and toxic air pollutants like benzene.

The researchers suspected that not all of those compounds were essential for growing CNTs, and they knew that heating the feedstock gas plays a critical role in creating the dangerous compounds. So they combined unheated ethylene and hydrogen with several of the 40 compounds, one by one, to see which combination of compounds led to the best growth. They observed that certain alkynes, or molecules that have at least two carbon atoms stuck together with three distinct bonds, produced the best growth, while other compounds that are undesirable by-products, such as methane and benzene, did not.

Plata and her colleagues accomplished their dramatic reduction in both harmful emissions and energy consumption by impinging room-temperature alkynes, with ethylene and hydrogen, directly onto the metal catalyst, without heat. They also learned that they could reduce the amount of ethylene and hydrogen used by about 20 and 40 percent, respectively, and still achieve the same rate and quality of CNT growth. Plata says that while the results of lab experiments are hard to generalize, in a market that is expected to reach several billion dollars within several years, these changes could translate into "significant cost savings" for manufacturers.

Industry reaction

Although it's too soon for manufacturers to adopt the method presented in the paper, David Lashmore, vice president and chief technology officer of Concord, N.H.-based Nanocomp Technologies, says the method is something his company is willing to try as it looks for ways to minimize the environmental effects of its production process. "This is of high interest to us and could have a broad impact on our process economics," he says.

Plata points out that the MIT study analyzed only one of several feedstock gases used to make CNTs, and that the same analysis needs to be done for the others. But for her own part, she is now focusing on how CNTs form, trying to determine the precise interaction of the metal catalyst and the hydrocarbons in this process. Knowing the catalyst's role could help researchers manipulate CNTs' formation atom by atom — much more precisely than they can now, she says.

The study was funded by the Woods Hole Oceanographic Institution, the Arunas and Pam Chesonis Ignition Grant via the MIT Earth Systems Initiative and the MIT Martin Society of Fellows for Sustainability, the Nanomanufacturing Program of the National Science Foundation, Lockheed Martin Nanosystems and the University of Michigan Department of Mechanical Engineering and College of Engineering.

####

For more information, please click here

Copyright © MIT

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Nanocomp Technologies

Related News Press

News and information

Berkeley Lab Researchers Demonstrate First Size-based Chromatography Technique for the Study of Living Cells April 22nd, 2014

PETA science consortium to present hazard testing strategy at nanotoxicology meeting: High tech field ripe for use of sophisticated non-animal testing strategies April 22nd, 2014

Harris & Harris Group Notes the Receipt of Proceeds From the Sale of Molecular Imprints' Semiconductor Business to Canon April 22nd, 2014

National Space Society Congratulates SpaceX on the Success of CRS-3 and the First Flight of the Falcon 9R April 22nd, 2014

Govt.-Legislation/Regulation/Funding/Policy

Cloaked DNA nanodevices survive pilot mission: Successful foray opens door to virus-like DNA nanodevices that could diagnose diseased tissues and manufacture drugs to treat them April 22nd, 2014

Berkeley Lab Researchers Demonstrate First Size-based Chromatography Technique for the Study of Living Cells April 22nd, 2014

Progress made in developing nanoscale electronics: New research directs charges through single molecules April 21st, 2014

'Exotic' material is like a switch when super thin April 18th, 2014

Possible Futures

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Surface Characteristics Influence Cellular Growth on Semiconductor Material March 12th, 2014

The "Tipping Point" February 12th, 2014

Academic/Education

Global leader in solar cell manufacturing eyes New York for major expansion outside of Japan: CNSE and Solar Frontier Explore $700 Million Investment, Job Creation in New York State April 22nd, 2014

University of Waterloo Visits China to Strengthen Bonds With Research Partners April 21st, 2014

Director Wally Pfister joins UC Berkeley neuroengineers to discuss the science behind ‘Transcendence’ April 7th, 2014

First annual science week highlights STEM pipeline and partnerships: UB, SUNY Buffalo State and ECC team up with the City of Buffalo and its schools for April 7-11 events April 3rd, 2014

Nanotubes/Buckyballs

Amino-functionalized carbon nanotubes act as a carrier for nerve growth factor April 21st, 2014

Effects of Carbon Nanotubes Studied on Pregnant Mothers April 12th, 2014

Nanotech Business Review 2013-2014 April 9th, 2014

Scientists Succeed in Simultaneous Determination of Acetaminophen, Codeine in Drug Samples April 9th, 2014

Announcements

Berkeley Lab Researchers Demonstrate First Size-based Chromatography Technique for the Study of Living Cells April 22nd, 2014

PETA science consortium to present hazard testing strategy at nanotoxicology meeting: High tech field ripe for use of sophisticated non-animal testing strategies April 22nd, 2014

Harris & Harris Group Notes the Receipt of Proceeds From the Sale of Molecular Imprints' Semiconductor Business to Canon April 22nd, 2014

National Space Society Congratulates SpaceX on the Success of CRS-3 and the First Flight of the Falcon 9R April 22nd, 2014

Environment

Trees go high-tech: process turns cellulose into energy storage devices April 7th, 2014

Fabricating Nanostructures with Silk Could Make Clean Rooms Green Rooms March 31st, 2014

University of Waterloo Engineering to Showcase Student Design March 14th, 2014

Iran Applying Nanotechnology in Growing Number of Industries March 10th, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE