Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Transparent Conductive Material Could Lead to Power-Generating Windows

Top: Scanning electron microscopy image and zoom of conjugated polymer (PPV) honeycomb. Bottom (left-to-right): Confocal fluorescence lifetime images of conjugated honeycomb, of polymer/fullerene honeycomb double layer and of polymer/fullerene honeycomb blend. Efficient charge transfer within the whole framework is observed in the case of polymer/fullerene honeycomb blend as a dramatic reduction in the fluorescence lifetime.
Top: Scanning electron microscopy image and zoom of conjugated polymer (PPV) honeycomb. Bottom (left-to-right): Confocal fluorescence lifetime images of conjugated honeycomb, of polymer/fullerene honeycomb double layer and of polymer/fullerene honeycomb blend. Efficient charge transfer within the whole framework is observed in the case of polymer/fullerene honeycomb blend as a dramatic reduction in the fluorescence lifetime.

Abstract:
Combines elements for light harvesting and electric charge transport over large, transparent areas

Transparent Conductive Material Could Lead to Power-Generating Windows

Upton, NY | Posted on November 3rd, 2010

Scientists at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory and Los Alamos National Laboratory have fabricated transparent thin films capable of absorbing light and generating electric charge over a relatively large area. The material, described in the journal Chemistry of Materials, could be used to develop transparent solar panels or even windows that absorb solar energy to generate electricity.

The material consists of a semiconducting polymer doped with carbon-rich fullerenes. Under carefully controlled conditions, the material self-assembles to form a reproducible pattern of micron-size hexagon-shaped cells over a relatively large area (up to several millimeters).

"Though such honeycomb-patterned thin films have previously been made using conventional polymers like polystyrene, this is the first report of such a material that blends semiconductors and fullerenes to absorb light and efficiently generate charge and charge separation," said lead scientist Mircea Cotlet, a physical chemist at Brookhaven's Center for Functional Nanomaterials (CFN).

Furthermore, the material remains largely transparent because the polymer chains pack densely only at the edges of the hexagons, while remaining loosely packed and spread very thin across the centers. "The densely packed edges strongly absorb light and may also facilitate conducting electricity," Cotlet explained, "while the centers do not absorb much light and are relatively transparent."

"Combining these traits and achieving large-scale patterning could enable a wide range of practical applications, such as energy-generating solar windows, transparent solar panels, and new kinds of optical displays," said co-author Zhihua Xu, a materials scientist at the CFN.

"Imagine a house with windows made of this kind of material, which, combined with a solar roof, would cut its electricity costs significantly. This is pretty exciting," Cotlet said.

The scientists fabricated the honeycomb thin films by creating a flow of micrometer-size water droplets across a thin layer of the polymer/fullerene blend solution. These water droplets self-assembled into large arrays within the polymer solution. As the solvent completely evaporates, the polymer forms a hexagonal honeycomb pattern over a large area.

"This is a cost-effective method, with potential to be scaled up from the laboratory to industrial-scale production," Xu said.

The scientists verified the uniformity of the honeycomb structure with various scanning probe and electron microscopy techniques, and tested the optical properties and charge generation at various parts of the honeycomb structure (edges, centers, and nodes where individual cells connect) using time-resolved confocal fluorescence microscopy.

The scientists also found that the degree of polymer packing was determined by the rate of solvent evaporation, which in turn determines the rate of charge transport through the material.

"The slower the solvent evaporates, the more tightly packed the polymer, and the better the charge transport," Cotlet said.

"Our work provides a deeper understanding of the optical properties of the honeycomb structure. The next step will be to use these honeycomb thin films to fabricate transparent and flexible organic solar cells and other devices," he said.

The research was supported at Los Alamos by the DOE Office of Science. The work was also carried out in part at the CFN and the Center for Integrated Nanotechnologies Gateway to Los Alamos facility. The Brookhaven team included Mircea Cotlet, Zhihua Xu, and Ranjith Krishna Pai. Collaborators from Los Alamos include Hsing-Lin Wang and Hsinhan Tsai, who are both users of the CFN facilities at Brookhaven, Andrew Dattelbaum from the Center for Integrated Nanotechnologies Gateway to Los Alamos facility, and project leader Andrew Shreve of the Materials Physics and Applications Division.

The Center for Functional Nanomaterials at Brookhaven National Laboratory and the Center for Integrated Nanotechnologies Gateway to Los Alamos facility are two of the five DOE Nanoscale Science Research Centers (NSRCs), premier national user facilities for interdisciplinary research at the nanoscale. Together the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The NSRCs are located at DOE's Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge and Sandia and Los Alamos national laboratories.

####

About Brookhaven National Laboratory
One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation of State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit, applied science and technology organization.

For more information, please click here

Contacts:
Karen McNulty Walsh
(631) 344-8350

Peter Genzer
(631) 344-3174

Copyright © Brookhaven National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Composite Pipe Long Term Testing Facility February 10th, 2016

Scientists take nanoparticle snapshots February 10th, 2016

Chemical cages: New technique advances synthetic biology February 10th, 2016

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Nanoparticle therapy that uses LDL and fish oil kills liver cancer cells February 9th, 2016

Thin films

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

IBS report electric transport across molybdenum disulfide grain boundaries: Scientific team from CINAP/IBS identifies previously undiscovered differences in grain boundaries January 28th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Composite Pipe Long Term Testing Facility February 10th, 2016

Scientists take nanoparticle snapshots February 10th, 2016

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Making sense of metallic glass February 9th, 2016

Possible Futures

Chemical cages: New technique advances synthetic biology February 10th, 2016

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Electron's 1-D metallic surface state observed: A step for the prediction of electronic properties of extremely-fine metal nanowires in next-generation semiconductors February 9th, 2016

A fast solidification process makes material crackle February 8th, 2016

Nanotubes/Buckyballs/Fullerenes

Superconductivity: Footballs with no resistance - Indications of light-induced lossless electricity transmission in fullerenes contribute to the search for superconducting materials for practical applications February 9th, 2016

The iron stepping stones to better wearable tech without semiconductors February 8th, 2016

Nano-coating makes coaxial cables lighter: Rice University scientists replace metal with carbon nanotubes for aerospace use January 28th, 2016

Scientists provide new guideline for synthesis of fullerene electron acceptors January 28th, 2016

Announcements

Composite Pipe Long Term Testing Facility February 10th, 2016

Scientists take nanoparticle snapshots February 10th, 2016

Chemical cages: New technique advances synthetic biology February 10th, 2016

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Energy

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Canadian physicists discover new properties of superconductivity February 8th, 2016

Host-guest nanowires for efficient water splitting and solar energy storage February 7th, 2016

February 4th, 2016

Home

Industrial Nanotech, Inc. Announces New Office in Arizona to Service the Company's New Regional and National Home Builders in Arizona and Nevada October 2nd, 2015

Industrial Nanotech, Inc. Provides Update on PCAOB Audited Financials July 27th, 2015

Solar cells in the roof and nanotechnology in the walls June 16th, 2015

Industrial Nanotech, Inc. Continues Global Development Focus on Original Equipment Manufacturer (OEM) Applications: Industrial Nanotech Continues Connecting With Manufacturers Who Seek Out Their Patented Thermal Insulation and Protective Coatings June 11th, 2015

Solar/Photovoltaic

Host-guest nanowires for efficient water splitting and solar energy storage February 7th, 2016

Simplifying solar cells with a new mix of materials: Berkeley Lab-led research team creates a high-efficiency device in 7 steps January 29th, 2016

An alternative to platinum: Iron-nitrogen compounds as catalysts in graphene January 28th, 2016

Scientists provide new guideline for synthesis of fullerene electron acceptors January 28th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic