Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Graphene rising

Graduate student Muge Acik - Courtesy of Rodolfo Guzman
Graduate student Muge Acik - Courtesy of Rodolfo Guzman

Abstract:
Grad student publishes on new material

By Rebecca Gomez

Graphene rising

Dallas, TX | Posted on November 1st, 2010

Before her research was published in the Oct. 2010 issue of the scientific journal Nature Materials, before her discovery of a radical new formation of graphene oxide, before she could even conceive of what the data from her experiments was telling her, materials science graduate student Muge Acik had to prove quantum physics wrong.

Acik, more familiar with chemistry than physics, worked with Materials Science Department Head Yves Chabal to observe the unusual behavior of electrons in the experiments.

"The exciting part was that to discover this conformation of graphene oxide, we had to solve how this conformation occurred," Chabal said.

The phenomena couldn't be explained by current physics. It was because of the unique properties of a new material called graphene.

According to the Royal Swedish Academy of Sciences (RASA), who awarded the 2010 Nobel Prize in Physics for the isolation and identification of graphene done by other physicists, graphene is a single layer of carbon just one atom thick. RASA has produced a public information document that states graphene is the strongest, thinnest material known on earth. Not only is it transparent, but it's also an ultra-fast conductor of electrons and heat.

Chabal was granted funding by Nanotech Research Initiative (NRI) and Texas Instruments (TI) to determine if graphene could be modified to supersede silicon-based transistors in creating faster, more powerful microelectronic devices.

"Transistors are very small switches that comprise the basic function of every electronic device. They give you a one or a zero, a yes or a no," Chabal said.

Chabal chose Acik, who had been endowed by a TI Diversity Fellowship, to create a stable attachment of graphene to oxygen that would render the material functional as a transistor.

"Imagine knowing only bicycles and being told to figure out how to use a car," Acik said. "That was graphene for me."

The research required completely new machines to experiment with the nano-scale material, machines that came with digital displays Acik said she was not familiar with. Acik enlisted the help of Natural Science and Engineering Research Laboratory (NSERL) lab assistant and computer engineering senior Rudolfo Guzman to understand the computer side of the experiments.

"At first their research was foreign to me, but I was able to help with any electrical system or computer programming issues in the lab," Guzman said.

The cross-disciplinary team collaborated with materials science professor Kyeongjae Cho and the entire faculty of NSERL to find out exactly what they had created.

"The formation we discovered was functional ether bound at the edges of graphene. This detail may seem mundane, but once discovered it can have great results," Chabal said.

The results as concluded in their Nature Materials article, ‘unusual infrared-absorption mechanism in thermally reduced graphene oxide,' stated this conformation of graphene oxide showed promise in applications of solar panels or thermal-infrared remote sensing (night vision).

Even though the research was driven by creating a graphene based transistor, Chabal said it is common that nanotechnology research will lead to unexpected applications.

He used similar research into microelectronic device applications for carbon nanotubules as an example.

"While people are waiting for the microelectronic devices, they may not know that tennis balls are already being manufactured with carbon nanotubules."

####

For more information, please click here

Copyright © University of Texas at Dallas

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Physics

SUNY Poly NanoCollege Faculty Member Selected as American Physical Society Fellow: SUNY Poly Associate Professor of Nanoscience Dr. Vincent LaBella Recognized for Significant Technological Innovations that Enable Interactive Learning December 17th, 2014

News and information

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

ORNL microscopy pencils patterns in polymers at the nanoscale December 17th, 2014

Unraveling the light of fireflies December 17th, 2014

First Home-Made Edible Herbal Nanodrug Presented to Pharmacies across Iran December 17th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Zenosense, Inc. - Hospital Collaboration - 400 Person Lung Cancer Detection Trial December 17th, 2014

SUNY Poly NanoCollege Faculty Member Selected as American Physical Society Fellow: SUNY Poly Associate Professor of Nanoscience Dr. Vincent LaBella Recognized for Significant Technological Innovations that Enable Interactive Learning December 17th, 2014

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

ORNL microscopy pencils patterns in polymers at the nanoscale December 17th, 2014

Academic/Education

SUNY Poly NanoCollege Faculty Member Selected as American Physical Society Fellow: SUNY Poly Associate Professor of Nanoscience Dr. Vincent LaBella Recognized for Significant Technological Innovations that Enable Interactive Learning December 17th, 2014

Nanomedicine expert joins Rice faculty: Gang Bao combines genetic, nano and imaging techniques to fight disease December 17th, 2014

FEI and Oregon Health & Science University Install a Complete Correlative Microscopy Workflow in Newly Built Collaborative Science Facility December 16th, 2014

Student Nanotechnology Laboratories Network Set Up in Iran December 15th, 2014

Nanotubes/Buckyballs

A sponge-like molecular cage for purification of fullerenes December 15th, 2014

'Trojan horse' proteins used to target hard-to-reach cancers: Scientists at Brunel University London have found a way of targeting hard-to-reach cancers and degenerative diseases using nanoparticles, but without causing the damaging side effects the treatment normally brings December 11th, 2014

Detecting gases wirelessly and cheaply: New sensor can transmit information on hazardous chemicals or food spoilage to a smartphone December 8th, 2014

Green meets nano: Scientists at TU Darmstadt create multifunctional nanotubes using nontoxic materials December 3rd, 2014

Announcements

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

ORNL microscopy pencils patterns in polymers at the nanoscale December 17th, 2014

Unraveling the light of fireflies December 17th, 2014

First Home-Made Edible Herbal Nanodrug Presented to Pharmacies across Iran December 17th, 2014

Tools

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

ORNL microscopy pencils patterns in polymers at the nanoscale December 17th, 2014

Unraveling the light of fireflies December 17th, 2014

Bruker Introduces BioScope Resolve High-Resolution BioAFM System: Featuring PeakForce Tapping for Quantitative Bio-Mechanical Property Mapping December 16th, 2014

Research partnerships

Unraveling the light of fireflies December 17th, 2014

Scientists trace nanoparticles from plants to caterpillars: Rice University study examines how nanoparticles behave in food chain December 16th, 2014

FEI and Oregon Health & Science University Install a Complete Correlative Microscopy Workflow in Newly Built Collaborative Science Facility December 16th, 2014

New Technique Could Harvest More of the Sun's Energy December 9th, 2014

Quantum nanoscience

Fraud-proof credit card possible because of quantum physics December 16th, 2014

Nanoscale resistors for quantum devices: The electrical characteristics of new thin-film chromium oxide resistors that can be tuned by controlling the oxygen content detailed in the 'Journal of Applied Physics' December 9th, 2014

High photosensitivity 2D-few-layered molybdenum diselenide phototransistors December 8th, 2014

Electron pairs on demand: Controlled emission and spatial splitting of electron pairs demonstrated December 4th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE