Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > News > Mass Can Be 'Created' Inside Graphene, Say Physicists

October 21st, 2010

Mass Can Be 'Created' Inside Graphene, Say Physicists

Abstract:
One of the most exciting new ideas in solid state physics is that graphene can act as a laboratory for studying exotic relativistic physics. It turns out that the electronic properties of graphene can be tuned so that the movement of electrons and holes through the structure at speeds of 10^6 m/s is mathematically equivalent to the behaviour of electrons travelling in a vacuum close to the speed of light.

In the language of physics, their behaviour is governed not by the conventional Schrodinger equation that ordinary electrons obey, but by the massless Dirac equation than describes relativistic physics. These equations take no account of mass (as the name implies)--so the electrons and holes behave as if they have no mass.

That's important because, in the past, the relativistic behaviour of electrons was only accessible to physicists with a high energy particle accelerator in their yard. Now any laboratory equipped with carbon, electricity and wires can do it.

This has led to massive interest: one idea is that a new generation of graphene-based electronic devices will be able to exploit the effects possible in relativistic physics rather than using plain old vanilla effects (although exactly how isn't yet clear).

Source:
technologyreview.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Springer and Tsinghua University Press present the second Nano Research Award: Paul Alivisatos of the University of California Berkeley receives the honor for outstanding contributions in nanoscience July 30th, 2015

European Technology Platform for Nanomedicine and ENATRANS European Consortium Launch the 2nd edition of the Nanomedicine Award: The Award to be presented at BIO-Europe conference in Munich, November 2015 July 30th, 2015

Take a trip through the brain July 30th, 2015

This could replace your silicon computer chips: A new semiconductor material made from black phosphorus may be a candidate to replace silicon in future tech July 30th, 2015

Physics

Meet the high-performance single-molecule diode: Major milestone in molecular electronics scored by Berkeley Lab and Columbia University team July 29th, 2015

Detecting small metallic contaminants in food via magnetization: A practical metallic-contaminant detecting system using three high-Tc RF superconducting quantum interference devices (SQUIDs) July 29th, 2015

Make mine a decaf: Breakthrough in knowledge of how nanoparticles grow: University of Leicester and CNRS researchers observe how nanoparticles grow when exposed to helium July 23rd, 2015

Drawing a line between quantum and classical world: Bell's Inequality fails as a test of the boundary July 21st, 2015

Possible Futures

This could replace your silicon computer chips: A new semiconductor material made from black phosphorus may be a candidate to replace silicon in future tech July 30th, 2015

Smaller, faster, cheaper: A new type of modulator for the future of data transmission July 27th, 2015

Researchers predict material with record-setting melting point July 27th, 2015

Global Corrosion Resistant Nano Coatings Market To 2015: Acute Market Reports July 27th, 2015

Nanotubes/Buckyballs/Fullerenes

Controlling Dynamic Behavior of Carbon Nanosheets in Structures Made Possible July 30th, 2015

March 2016; 6th Int'l Conference on Nanostructures in Iran July 29th, 2015

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

'Seeing' molecular interactions could give boost to organic electronics July 28th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project