Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > News > Mass Can Be 'Created' Inside Graphene, Say Physicists

October 21st, 2010

Mass Can Be 'Created' Inside Graphene, Say Physicists

Abstract:
One of the most exciting new ideas in solid state physics is that graphene can act as a laboratory for studying exotic relativistic physics. It turns out that the electronic properties of graphene can be tuned so that the movement of electrons and holes through the structure at speeds of 10^6 m/s is mathematically equivalent to the behaviour of electrons travelling in a vacuum close to the speed of light.

In the language of physics, their behaviour is governed not by the conventional Schrodinger equation that ordinary electrons obey, but by the massless Dirac equation than describes relativistic physics. These equations take no account of mass (as the name implies)--so the electrons and holes behave as if they have no mass.

That's important because, in the past, the relativistic behaviour of electrons was only accessible to physicists with a high energy particle accelerator in their yard. Now any laboratory equipped with carbon, electricity and wires can do it.

This has led to massive interest: one idea is that a new generation of graphene-based electronic devices will be able to exploit the effects possible in relativistic physics rather than using plain old vanilla effects (although exactly how isn't yet clear).

Source:
technologyreview.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

A new approach to ultrafast light pulses: Unusual fluorescent materials could be used for rapid light-based communications systems September 19th, 2017

New quantum phenomena in graphene superlattices September 18th, 2017

Do titanium dioxide particles from orthopedic implants disrupt bone repair? September 16th, 2017

Hydrogen power moves a step closer: Physicists are developing methods of creating renewable fuel from water using quantum technology September 15th, 2017

Physics

New quantum phenomena in graphene superlattices September 18th, 2017

Possible Futures

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

A new approach to ultrafast light pulses: Unusual fluorescent materials could be used for rapid light-based communications systems September 19th, 2017

Hydrogen power moves a step closer: Physicists are developing methods of creating renewable fuel from water using quantum technology September 15th, 2017

New insights into nanocrystal growth in liquid: Understanding process that creates complex crystals important for energy applications September 14th, 2017

Nanotubes/Buckyballs/Fullerenes/Nanorods

How to draw electricity from the bloodstream: A one-dimensional fluidic nanogenerator with a high power-conversion efficiency September 11th, 2017

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

Regulation of two-dimensional nanomaterials: New driving force for lithium-ion batteries July 26th, 2017

Killing cancer in the heat of the moment: A new method efficiently transfers genes into cells, then activates them with light. This could lead to gene therapies for cancers July 9th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project