Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Gradient Multi-Layer Nano-films for Photovoltaic and other applications

GML (Gradient Multi-Layer) nano-film
GML (Gradient Multi-Layer) nano-film

Abstract:
Recently, a new type of nanostructure - GML (Gradient Multi-Layer) nano-film - attracted attention of the researchers in the solar cell industry. The properties of this structure can be used in design of more efficient and less expensive solar cells, as well as other nano-structured devices.

Gradient Multi-Layer Nano-films for Photovoltaic and other applications

Posted on October 7th, 2010

GML Nano films

Quantum Dots are spherical nano-particles (or nano-crystals) typically made of semiconductor or metal.

Nano-structured Materials (or Devices) typically contain two or more interpenetrating nano-scale networks (Bulk Hetero Junctions or BHJs) including Organic (Polymer Blends), Inorganic (Quantum Dots only), and Hybrid (Polymer with Embedded Quantum Dots).

Gradient Multi-Layer (GML) Nano-structure (or nano-film) is a stack of Quantum Dot layers arranged to form a size gradient, composition gradient, density gradient or composition/size modulation with the strict control of each layer thickness and composition. The GML nano-film may include two or more types of Quantum Dot material to form Bulk Hetero Junctions or it can be embedded in the organic material (polymer).

GML Nano films have been described so far in only a few publications i.e. "Microchemical Nanofactories", US Patent Publ. 20080108122 (chemical method of building GML Nano); "Nanophotovoltaic Device with Improved Quantum Efficiency", US Patent Publ. 2008142075 2008.(mine); "Energy transfer between quantum dots of different sizes for quantum dot solar cells", 34th PV Spec.Conf., 2009 (Stanford research).

GML Nano films applications for PhotoVoltaics

Assembly of Quantum Dot layers can be designed to efficiently absorb the most of the Sun spectrum (0.3-2.0+ eV) by size and composition tuning. Specifically, one type of Quantum Dots can be selected from the low band-gap material (i.e. PbSe, InAs, Ge, others) to be able to absorb InfraRead part of the spectrum, and by tuning the QDs' sizes Quantum Dots made from the same material will absorb "green/yellow" part. The other Quantum Dots may have a wider band gap to absorb the "blue/UV" part of Spectrum. Due to the Quantum Confinement light absorption in Quantum Dot layers is very strong so the entire Sun spectrum can be absorbed within several tens to a hundred of nanometers.

Quantum Dots generally exhibit Multi Exciton Generation (MEG) phenomena, i.e. generation of more than one electron-hole pair by a single high-energy photon. GML Nano-films, containing low band gap QD's are expected to exhibit and utilize this phenomena, at least in some portion of the film thus enhancing Power Conversion Efficiency of GML Nano-film solar cell.

Size gradient in the GML Nano film creates corresponding gradient of the electro-chemical potential, which is equivalent to generation of high built-in Electric field in the film, which enhances transport of electrons and holes thus improving internal quantum efficiency (IQE) and photo current.

GML Nano films can exhibit phenomena of light trapping and photon re-emission, which additionally enhances IQE.

In case the efficient method of building GML Nano film is available the efficient PV structure can be formed that will provide the highest possible Power Conversion Efficiency.

PV expectations and main challenges

Theoretically, assuming a perfect transport (IQE), Multi Exciton Generation and perfect light trapping/photon re-emission and max possible Voc, the PCE can reach 65+% (still below the thermodynamic limit of about 86%). It is, however, a very challenging goal (see e.g. "Prospects of Nanostructure-Based Solar Cells...", Int. Journ. Of Photoenergy, 2009, id 154059).

One challenge here is to design a GML Nano structure in such precise and well-controlled way that allows for successful utilizing most or all of the above advantages of QD systems. But, even if the "smart" design of an efficient GML Nano structure had been available it would be unclear as to how to build such a structure in a well controlled, reliable, inexpensive and production-worthy way.

This represent another big challenge as most of the known methods of building nanostructured material are either unable to form a GML Nano structure (spin-coating, generally all solution coating methods) or are very expensive with low throughput and difficulties to be transferred to a full-scale production environment (Atomic Layer Deposition (ALD), Langmuir-Blodget or Microchemical method of US 20080108122).

####

For more information, please click here

Contacts:
Dr. Boris Gilman

Copyright © Coolsol R&C

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Design of micro and nanoparticles to improve treatments for Alzheimers and Parkinsons: At the Faculty of Pharmacy of the UPV/EHU-University of the Basque Country encapsulation techniques are being developed to deliver correctly and effectively certain drugs October 20th, 2014

Physicists build reversible laser tractor beam October 20th, 2014

Removal of Limitations of Composites at Superheat Temperatures October 20th, 2014

Energy

First Canada Excellence Research Chair gets $10 million from the federal government for oilsands research at the University of Calgary: Federal government announces prestigious research chair to study improving oil production efficiency October 19th, 2014

Magnetic mirrors enable new technologies by reflecting light in uncanny ways October 16th, 2014

Unique catalysts for hydrogen fuel cells synthesized in ordinary kitchen microwave oven October 14th, 2014

Dyesol Signs Letter of Intent with Tata Steel October 13th, 2014

Quantum Dots/Rods

QD Vision Wins Prestigious Presidential Green Chemistry Challenge Award from the U.S. Environmental Protection Agency October 16th, 2014

Ultrafast remote switching of light emission October 2nd, 2014

Platinum meets its match in quantum dots from coal: Rice University's cheap hybrid outperforms rare metal as fuel-cell catalyst October 1st, 2014

University of Electro-Communications research: High density quantum dots for powerful solar cells September 25th, 2014

Solar/Photovoltaic

Magnetic mirrors enable new technologies by reflecting light in uncanny ways October 16th, 2014

Dyesol Signs Letter of Intent with Tata Steel October 13th, 2014

DNA nano-foundries cast custom-shaped metal nanoparticles: DNA's programmable assembly is leveraged to form precise 3D nanomaterials for disease detection, environmental testing, electronics and beyond October 10th, 2014

Over 100 European experts meet in Barcelona thanks to a COST Action coordinated from ICN2: The ISOS-7 Summit discusses the future of organic photovoltaic devices October 7th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE