Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Gradient Multi-Layer Nano-films for Photovoltaic and other applications

GML (Gradient Multi-Layer) nano-film
GML (Gradient Multi-Layer) nano-film

Recently, a new type of nanostructure - GML (Gradient Multi-Layer) nano-film - attracted attention of the researchers in the solar cell industry. The properties of this structure can be used in design of more efficient and less expensive solar cells, as well as other nano-structured devices.

Gradient Multi-Layer Nano-films for Photovoltaic and other applications

Posted on October 7th, 2010

GML Nano films

Quantum Dots are spherical nano-particles (or nano-crystals) typically made of semiconductor or metal.

Nano-structured Materials (or Devices) typically contain two or more interpenetrating nano-scale networks (Bulk Hetero Junctions or BHJs) including Organic (Polymer Blends), Inorganic (Quantum Dots only), and Hybrid (Polymer with Embedded Quantum Dots).

Gradient Multi-Layer (GML) Nano-structure (or nano-film) is a stack of Quantum Dot layers arranged to form a size gradient, composition gradient, density gradient or composition/size modulation with the strict control of each layer thickness and composition. The GML nano-film may include two or more types of Quantum Dot material to form Bulk Hetero Junctions or it can be embedded in the organic material (polymer).

GML Nano films have been described so far in only a few publications i.e. "Microchemical Nanofactories", US Patent Publ. 20080108122 (chemical method of building GML Nano); "Nanophotovoltaic Device with Improved Quantum Efficiency", US Patent Publ. 2008142075 2008.(mine); "Energy transfer between quantum dots of different sizes for quantum dot solar cells", 34th PV Spec.Conf., 2009 (Stanford research).

GML Nano films applications for PhotoVoltaics

Assembly of Quantum Dot layers can be designed to efficiently absorb the most of the Sun spectrum (0.3-2.0+ eV) by size and composition tuning. Specifically, one type of Quantum Dots can be selected from the low band-gap material (i.e. PbSe, InAs, Ge, others) to be able to absorb InfraRead part of the spectrum, and by tuning the QDs' sizes Quantum Dots made from the same material will absorb "green/yellow" part. The other Quantum Dots may have a wider band gap to absorb the "blue/UV" part of Spectrum. Due to the Quantum Confinement light absorption in Quantum Dot layers is very strong so the entire Sun spectrum can be absorbed within several tens to a hundred of nanometers.

Quantum Dots generally exhibit Multi Exciton Generation (MEG) phenomena, i.e. generation of more than one electron-hole pair by a single high-energy photon. GML Nano-films, containing low band gap QD's are expected to exhibit and utilize this phenomena, at least in some portion of the film thus enhancing Power Conversion Efficiency of GML Nano-film solar cell.

Size gradient in the GML Nano film creates corresponding gradient of the electro-chemical potential, which is equivalent to generation of high built-in Electric field in the film, which enhances transport of electrons and holes thus improving internal quantum efficiency (IQE) and photo current.

GML Nano films can exhibit phenomena of light trapping and photon re-emission, which additionally enhances IQE.

In case the efficient method of building GML Nano film is available the efficient PV structure can be formed that will provide the highest possible Power Conversion Efficiency.

PV expectations and main challenges

Theoretically, assuming a perfect transport (IQE), Multi Exciton Generation and perfect light trapping/photon re-emission and max possible Voc, the PCE can reach 65+% (still below the thermodynamic limit of about 86%). It is, however, a very challenging goal (see e.g. "Prospects of Nanostructure-Based Solar Cells...", Int. Journ. Of Photoenergy, 2009, id 154059).

One challenge here is to design a GML Nano structure in such precise and well-controlled way that allows for successful utilizing most or all of the above advantages of QD systems. But, even if the "smart" design of an efficient GML Nano structure had been available it would be unclear as to how to build such a structure in a well controlled, reliable, inexpensive and production-worthy way.

This represent another big challenge as most of the known methods of building nanostructured material are either unable to form a GML Nano structure (spin-coating, generally all solution coating methods) or are very expensive with low throughput and difficulties to be transferred to a full-scale production environment (Atomic Layer Deposition (ALD), Langmuir-Blodget or Microchemical method of US 20080108122).


For more information, please click here

Dr. Boris Gilman

Copyright © Coolsol R&C

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Analog DNA circuit does math in a test tube: DNA computers could one day be programmed to diagnose and treat disease August 25th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016


New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Lehigh engineer discovers a high-speed nano-avalanche: New findings published in the Journal of Electrochemical Society about the process involving transformations in glass that occur under intense electrical and thermal conditions could lead the way to more energy-efficient glas August 24th, 2016

New flexible material can make any window 'smart' August 23rd, 2016

Researchers reduce expensive noble metals for fuel cell reactions August 22nd, 2016

Quantum Dots/Rods

Quantum dots with impermeable shell: A powerful tool for nanoengineering August 12th, 2016

Diamond-based light sources will lay a foundation for quantum communications of the future: Electrified quantum diamond can become the heart of quantum networks and computers of the future August 7th, 2016

A new type of quantum bits July 29th, 2016

Researchers develop faster, precise silica coating process for quantum dot nanorods July 12th, 2016


Let's roll: Material for polymer solar cells may lend itself to large-area processing: 'Sweet spot' for mass-producing polymer solar cells may be far larger than dictated by the conventional wisdom August 12th, 2016

NREL technique leads to improved perovskite solar cells August 11th, 2016

Making a solar energy conversion breakthrough with help from a ferroelectrics pioneer: Philadelphia-based team shows how a ferroelectric insulator can surpass shockley-queisser limit August 9th, 2016

Tiny high-performance solar cells turn power generation sideways August 5th, 2016

The latest news from around the world, FREE

  Premium Products
Only the news you want to read!
 Learn More
University Technology Transfer & Patents
 Learn More
Full-service, expert consulting
 Learn More

Nanotechnology Now Featured Books


The Hunger Project

Car Brands
Buy website traffic