Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Cells studied in 3-D may reveal novel cancer targets

Reflection confocal micrograph of collagen fibers of a 3D matrix with cancer cells embedded. Image by Stephanie Fraley/Wirtz Lab
Reflection confocal micrograph of collagen fibers of a 3D matrix with cancer cells embedded. Image by Stephanie Fraley/Wirtz Lab

Abstract:
Showing movies in 3-D has produced a box-office bonanza in recent months. Could viewing cell behavior in three dimensions lead to important advances in cancer research? A new study led by Johns Hopkins University engineers indicates it may happen. Looking at cells in 3-D, the team members concluded, yields more accurate information that could help develop drugs to prevent cancer's spread.

by Mary Spiro

Cells studied in 3-D may reveal novel cancer targets

Baltimore, MD | Posted on October 4th, 2010

"Finding out how cells move and stick to surfaces is critical to our understanding of cancer and other diseases. But most of what we know about these behaviors has been learned in the 2-D environment of Petri dishes," said Denis Wirtz, director of the Johns Hopkins Engineering in Oncology Center and principal investigator of the study. "Our study demonstrates for the first time that the way cells move inside a three-dimensional environment, such as the human body, is fundamentally different from the behavior we've seen in conventional flat lab dishes. It's both qualitatively and quantitatively different."

One implication of this discovery is that the results produced by a common high-speed method of screening drugs to prevent cell migration on flat substrates are, at best, misleading, said Wirtz, who also is the Theophilus H. Smoot Professor of Chemical and Biomolecular Engineering at Johns Hopkins. This is important because cell movement is related to the spread of cancer, Wirtz said. "Our study identified possible targets to dramatically slow down cell invasion in a three-dimensional matrix."

When cells are grown in two dimensions, Wirtz said, certain proteins help to form long-lived attachments called focal adhesions on surfaces. Under these 2-D conditions, these adhesions can last several seconds to several minutes. The cell also develops a broad, fan-shaped protrusion called a lamella along its leading edges, which helps move it forward. "In 3-D, the shape is completely different," Wirtz said. "It is more spindlelike with two pointed protrusions at opposite ends. Focal adhesions, if they exist at all, are so tiny and so short-lived they cannot be resolved with microscopy."

The study's lead author, Stephanie Fraley, a Johns Hopkins doctoral student in Chemical and Biomolecular Engineering, said that the shape and mode of movement for cells in 2-D are merely an "artifact of their environment," which could produce misleading results when testing the effect of different drugs. "It is much more difficult to do 3-D cell culture than it is to do 2-D cell culture," Fraley said. "Typically, any kind of drug study that you do is conducted in 2D cell cultures before it is carried over into animal models. Sometimes, drug study results don't resemble the outcomes of clinical studies. This may be one of the keys to understanding why things don't always match up."

Fraley's faculty supervisor, Wirtz, suggested that part of the reason for the disconnect could be that even in studies that are called 3-D, the top of the cells are still located above the matrix. "Most of the work has been for cells only partially embedded in a matrix, which we call 2.5-D," he said. "Our paper shows the fundamental difference between 3-D and 2.5-D: Focal adhesions disappear, and the role of focal adhesion proteins in regulating cell motility becomes different."

Wirtz added that "because loss of adhesion and enhanced cell movement are hallmarks of cancer," his team's findings should radically alter the way cells are cultured for drug studies. For example, the team found that in a 3-D environment, cells possessing the protein zyxin would move in a random way, exploring their local environment. But when the gene for zyxin was disabled, the cells traveled in a rapid and persistent, almost one-dimensional pathway far from their place of origin.

Fraley said such cells might even travel back down the same pathways they had already explored. "It turns out that zyxin is misregulated in many cancers," Fraley said. Therefore, she added, an understanding of the function of proteins like zyxin in a 3-D cell culture is critical to understanding how cancer spreads, or metastasizes. "Of course tumor growth is important, but what kills most cancer patients is metastasis," she said.

To study cells in 3-D, the team coated a glass slide with layers of collagen-enriched gel several millimeters thick. Collagen, the most abundant protein in the body, forms a network in the gel of cross-linked fibers similar to the natural extracellular matrix scaffold upon which cells grow in the body. The researchers then mixed cells into the gel before it set. Next, they used an inverted confocal microscope to view from below the cells traveling within the gel matrix. The displacement of tiny beads embedded in the gel was used to show movement of the collagen fibers as the cells extended protrusions in both directions and then pulled inward before releasing one fiber and propelling themselves forward.

Fraley compared the movement of the cells to a person trying to maneuver through an obstacle course crisscrossed with bungee cords. "Cells move by extending one protrusion forward and another backward, contracting inward, and then releasing one of the contacts before releasing the other," she said. Ultimately, the cell moves in the direction of the contact released last.

When a cell moves along on a 2-D surface, the underside of the cell is in constant contact with a surface, where it can form many large and long-lasting focal adhesions. Cells moving in 3-D environments, however, only make brief contacts with the network of collagen fibers surrounding them-contacts too small to see and too short-lived to even measure, the researchers observed.

"We think the same focal adhesion proteins identified in 2-D situations play a role in 3-D motility, but their role in 3-D is completely different and unknown," Wirtz said. "There is more we need to discover."

Fraley said her future research will be focused specifically on the role of mechanosensory proteins like zyxin on motility, as well as how factors such as gel matrix pore size and stiffness affect cell migration in 3-D.

Co-investigators on this research from Washington University in St. Louis were Gregory D. Longmore, a professor of medicine, and his postdoctoral fellow Yunfeng Feng, both of whom are affiliated with the university's BRIGHT Institute. Longmore and Wirtz lead one of three core projects that are the focus of the Johns Hopkins Engineering in Oncology Center, a National Cancer Institute-funded Physical Sciences in Oncology Center. Additional Johns Hopkins authors, all from the Department of Chemical and Biomolecular Engineering, were Alfredo Celedon, a recent doctoral recipient; Ranjini Krishnamurthy, a recent bachelor's degree recipient; and Dong-Hwee Kim, a current doctoral student.

Funding for the research was provided by the National Cancer Institute. This study, a collaboration with researchers at Washington University in St. Louis, appeared in the June issue of Nature Cell Biology.

####

About Johns Hopkins Institute for NanoBioTechnology
The Johns Hopkins Institute for NanoBioTechnology (INBT) at Johns Hopkins University brings together researchers from: Bloomberg School of Public Health, Krieger School of Arts and Sciences, School of Medicine, Applied Physics Laboratory and Whiting School of Engineering to create new knowledge and new technologies at the interface of nanoscience and medicine.

For more information, please click here

Contacts:
For media inquiries contact Mary Spiro at or call 410 516-4802

Copyright © Johns Hopkins Institute for NanoBioTechnology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Heating quantum matter: A novel view on topology: Physicists demonstrate how heating up a quantum system can be used as a universal probe for exotic states of matter August 22nd, 2017

A Tougher Tooth: A new dental restoration composite developed by UCSB scientists proves more durable than the conventional material August 22nd, 2017

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Tokai University research: Nanomaterial wrap for improved tissue imaging August 21st, 2017

Govt.-Legislation/Regulation/Funding/Policy

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Possible Futures

Heating quantum matter: A novel view on topology: Physicists demonstrate how heating up a quantum system can be used as a universal probe for exotic states of matter August 22nd, 2017

A Tougher Tooth: A new dental restoration composite developed by UCSB scientists proves more durable than the conventional material August 22nd, 2017

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Tokai University research: Nanomaterial wrap for improved tissue imaging August 21st, 2017

Academic/Education

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Graduate Students from Across the Country Attend Hands-on NanoCamp: Prominent scientists Warren Oliver, Ph.D., and George Pharr, Ph.D., presented a weeklong NanoCamp for hand-picked graduate students across the United States July 26th, 2017

The Physics Department of Imperial College, London, uses the Quorum Q150T to deposit metals and ITO to make plasmonic sensors and electric contact pads July 13th, 2017

Nanomedicine

Tokai University research: Nanomaterial wrap for improved tissue imaging August 21st, 2017

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Announcements

Heating quantum matter: A novel view on topology: Physicists demonstrate how heating up a quantum system can be used as a universal probe for exotic states of matter August 22nd, 2017

A Tougher Tooth: A new dental restoration composite developed by UCSB scientists proves more durable than the conventional material August 22nd, 2017

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Tokai University research: Nanomaterial wrap for improved tissue imaging August 21st, 2017

Nanobiotechnology

Tokai University research: Nanomaterial wrap for improved tissue imaging August 21st, 2017

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Research partnerships

A Tougher Tooth: A new dental restoration composite developed by UCSB scientists proves more durable than the conventional material August 22nd, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project