Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Turning Waste Heat Into Power

A "forest" of molecules holds the promise of turning waste heat into electricity. UA physicists discovered that because of quantum effects, electron waves traveling along the backbone of each molecule interfere with each other, leading to the buildup of a voltage between the hot and cold electrodes (the golden structures on the bottom and top). (Rendering by Justin Bergfield)
A "forest" of molecules holds the promise of turning waste heat into electricity. UA physicists discovered that because of quantum effects, electron waves traveling along the backbone of each molecule interfere with each other, leading to the buildup of a voltage between the hot and cold electrodes (the golden structures on the bottom and top). (Rendering by Justin Bergfield)

Abstract:
UA physicists have discovered a new way of harvesting waste heat and turning it into electrical power. Taking advantage of quantum effects, the technology holds great promise for making cars, power plants, factories and solar panels more efficient.

By Daniel Stolte, University Communications

Turning Waste Heat Into Power

Tucson, AZ | Posted on October 2nd, 2010

What do a car engine, a power plant, a factory and a solar panel have in common? They all generate heat - a lot of which is wasted.

University of Arizona physicists have discovered a new way of harvesting waste heat and turning it into electrical power.

Using a theoretical model of a so-called molecular thermoelectric device, the technology holds great promise for making cars, power plants, factories and solar panels more efficient, to name a few possible applications. In addition, more efficient thermoelectric materials would make ozone-depleting chlorofluorocarbons, or CFCs, obsolete.

The research group led by Charles Stafford, associate professor of physics, published its findings in the September issue of the scientific journal, ACS Nano.

"Thermoelectricity makes it possible to cleanly convert heat directly into electrical energy in a device with no moving parts," said lead author Justin Bergfield, a doctoral candidate in the UA College of Optical Sciences.

"Our colleagues in the field tell us they are pretty confident that the devices we have designed on the computer can be built with the characteristics that we see in our simulations."

"We anticipate the thermoelectric voltage using our design to be about 100 times larger than what others have achieved in the lab," Stafford added.

Catching the energy lost through waste heat has been on the wish list of engineers for a long time but, so far, a concept for replacing existing devices that is both more efficient and economically competitive has been lacking.

Unlike existing heat-conversion devices such as refrigerators and steam turbines, the devices of Bergfield and Stafford require no mechanics and no ozone-depleting chemicals. Instead, a rubber-like polymer sandwiched between two metals acting as electrodes can do the trick.

Car or factory exhaust pipes could be coated with the material, less than 1 millionth of an inch thick, to harvest energy otherwise lost as heat and generate electricity.

The physicists take advantage of the laws of quantum physics, a realm not typically tapped into when engineering power-generating technology. To the uninitiated, the laws of quantum physics appear to fly in the face of how things are "supposed" to behave.

The key to the technology lies in a quantum law physicists call wave-particle duality: Tiny objects such as electrons can behave either as a wave or as a particle.

"In a sense, an electron is like a red sports car," Bergfield said. "The sports car is both a car and it's red, just as the electron is both a particle and a wave. The two are properties of the same thing. Electrons are just less obvious to us than sports cars."

Bergfield and Stafford discovered the potential for converting heat into electricity when they studied polyphenyl ethers, molecules that spontaneously aggregate into polymers, long chains of repeating units. The backbone of each polyphenyl ether molecule consists of a chain of benzene rings, which in turn are built from carbon atoms. The chain link structure of each molecule acts as a "molecular wire" through which electrons can travel.

"We had both worked with these molecules before and thought about using them for a thermoelectric device," Bergfield said, "but we hadn't really found anything special about them until Michelle Solis, an undergrad who worked on independent study in the lab, discovered that, low and behold, these things had a special feature."

Using computer simulations, Bergfield then "grew" a forest of molecules sandwiched between two electrodes and exposed the array to a simulated heat source.

"As you increase the number of benzene rings in each molecule, you increase the power generated," Bergfield said.

The secret to the molecules' capability to turn heat into power lies in their structure: Like water reaching a fork in a river, the flow of electrons along the molecule is split in two once it encounters a benzene ring, with one flow of electrons following along each arm of the ring.

Bergfield designed the benzene ring circuit in such a way that in one path the electron is forced to travel a longer distance around the ring than the other. This causes the two electron waves to be out of phase once they reunite upon reaching the far side of the benzene ring. When the waves meet, they cancel each other out in a process known as quantum interference. When a temperature difference is placed across the circuit, this interruption in the flow of electric charge leads to the buildup of an electric potential - voltage - between the two electrodes.

Wave interference is a concept exploited by noise-cancelling headphones: Incoming sound waves are met with counter waves generated by the device, wiping out the offending noise.

"We are the first to harness the wave nature of the electron and develop a concept to turn it into usable energy," Stafford said.

Analogous to solid state versus spinning hard drive type computer memory, the UA-designed thermoelectric devices require no moving parts. By design, they are self-contained, easier to manufacture and easier to maintain compared to currently available technology.

"You could just take a pair of metal electrodes and paint them with a single layer of these molecules," Bergfield said. "That would give you a little sandwich that would act as your thermoelectric device. With a solid-state device you don't need cooling agents, you don't need liquid nitrogen shipments, and you don't need to do a lot of maintenance."

"You could say, instead of Freon gas, we use electron gas," Stafford added.

"The effects we see are not unique to the molecules we used in our simulation," Bergfield said. "Any quantum-scale device where you have a cancellation of electric charge will do the trick, as long as there is a temperature difference. The greater the temperature difference, the more power you can generate."

Molecular thermoelectric devices could help solve an issue currently plaguing photovoltaic cells harvesting energy from sunlight.

"Solar panels get very hot and their efficiency goes down," Stafford said. "You could harvest some of that heat and use it to generate additional electricity while simultaneously cooling the panel and making its own photovoltaic process more efficient."

"With a very efficient thermoelectric device based on our design, you could power about 200 100-Watt light bulbs using the waste heat of an automobile," he said. "Put another way, one could increase the car's efficiency by well over 25 percent, which would be ideal for a hybrid since it already uses an electrical motor."

So, next time you watch a red sports car zip by, think of the hidden power of the electron and how much more efficient that sports car could be with a thermoelectric device wrapped around its exhaust pipe.

Reference: Giant Thermoelectric Effect from Transmission Supernodes. Justin Bergfield, Michelle Solis, and Charles Stafford. ACS Nano Sept. 2010.

Funding for this research was provided by the UA physics department.

####

For more information, please click here

Copyright © University of Arizona

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Oxford Instruments congratulates Lancaster University for inaugurating the IsoLab, built for studying quantum systems June 20th, 2017

Physics

In atomic propellers, quantum phenomena can mimic everyday physics June 1st, 2017

Unveiling the quantum necklace: Researchers simulate quantum necklace-like structures in superfluids May 26th, 2017

Ultracold atom waves may shed light on rogue ocean killers: Rice quantum experiments probe underlying physics of rogue ocean waves April 27th, 2017

Geoffrey Beach: Drawn to explore magnetism: Materials researcher is working on the magnetic memory of the future April 25th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Alloying materials of different structures offers new tool for controlling properties June 19th, 2017

New prospects for universal memory -- high speed of RAM and the capacity of flash: Thin films created at MIPT could be the basis for future development of ReRAM June 17th, 2017

Possible Futures

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Oxford Instruments congratulates Lancaster University for inaugurating the IsoLab, built for studying quantum systems June 20th, 2017

Alloying materials of different structures offers new tool for controlling properties June 19th, 2017

Academic/Education

Oxford Instruments congratulates Lancaster University for inaugurating the IsoLab, built for studying quantum systems June 20th, 2017

The 2017 Winners for Generation Nano June 8th, 2017

MIT Energy Initiative awards 10 seed fund grants for early-stage energy research May 4th, 2017

Bar-Ilan University to set up quantum research center May 1st, 2017

Discoveries

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Alloying materials of different structures offers new tool for controlling properties June 19th, 2017

Announcements

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Cambridge Nanotherm partners with Inabata for global sales and distribution June 20th, 2017

Automotive/Transportation

Letiís Autonomous-Vehicle System Embedded in Infineonís AURIX Platform: Letiís Low-Power, Multi-Sensor System that Transforms Distance Data into Clear Information About the Driving Environment Will Be Demonstrated at ITS Meeting in Strasbourg, June 19-22 June 20th, 2017

Development of low-dimensional nanomaterials could revolutionize future technologies June 15th, 2017

GLOBALFOUNDRIES Launches 7nm ASIC Platform for Data Center, Machine Learning, and 5G Networks FX-7TM offering leverages the companyís 7nm: FinFET process to deliver best in class IP and Solutions June 13th, 2017

Leti Announces Two New Tools for Improving Transportation Comfort, Safety and Efficiency: Wearable Device Measures Stress Responses for Travelers, Pilots and Truck Drivers, While Smartphone App Provides Transit Agencies Broad Data on Transport Modes June 13th, 2017

Industrial

Alloying materials of different structures offers new tool for controlling properties June 19th, 2017

Carbodeon demonstrates NanoDiamond nickel coatings with enhanced tribological properties June 7th, 2017

Stanford scientists use nanotechnology to boost the performance of key industrial catalyst May 18th, 2017

Better living through pressure: Functional nanomaterials made easy April 19th, 2017

Solar/Photovoltaic

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Development of low-dimensional nanomaterials could revolutionize future technologies June 15th, 2017

In a project funded by the Austrian Science Fund FWF, the physicist Serdar SarıÁiftÁi investigates possible uses in electronics of the semiconductor properties of indigo pigment June 14th, 2017

Quantum nanoscience

Oxford Instruments congratulates Lancaster University for inaugurating the IsoLab, built for studying quantum systems June 20th, 2017

In atomic propellers, quantum phenomena can mimic everyday physics June 1st, 2017

Unveiling the quantum necklace: Researchers simulate quantum necklace-like structures in superfluids May 26th, 2017

The speed limit for intra-chip communications in microprocessors of the future January 23rd, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project