Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Physicists break color barrier for sending, receiving photons

Abstract:
Researchers at University of Oregon lead collaborative efforts resulting in two projects that could boost quantum computing and deliver advanced Web security in the near future

Physicists break color barrier for sending, receiving photons

Eugene, OR | Posted on October 1st, 2010

University of Oregon scientists have invented a method to change the color of single photons in a fiber optic cable. The laser-tweaked feat could be a quantum step forward for transferring and receiving high volumes of secured data for future generations of the Internet.

The proof-of-concept experiment is reported in a paper about work led by UO physicist Michael G. Raymer that appeared in the Aug. 27 issue of Physical Review Letters.

In a separate paper also published by the same journal on Sep. 15, Raymer and collaborators at the University of Bath in the United Kingdom tell how they added hydrogen and a short laser burst to a hollow "photonic crystal" fiber cable to create multiple colors, or wavelengths, of light. This paper, Raymer said, provides groundwork for future research in creating ultra-short light pulses.

The single-photon project, in which a dual-color burst of laser light was used to change the color of a separate single photon of light, is directly applicable to future Internet communications technology, said Raymer, the UO's Knight Professor of Liberal Arts and Sciences and author of a newly published textbook "The Silicon Web: The Physics Behind the Internet."

In the computing world, digital data now is contained as individual bits represented by many electrons and is transmitted using pulses of infrared light containing many photons. In quantum computing -- a futuristic technology -- data might be stored in individual electrons and photons. Such quantum techniques could make data 100-percent secure from hackers and expand the ability to search large databases, Raymer said.

"There is a need for more bandwidth, or data rate, in fiber optic networks," he said. "In today's fiber optic lines one frequency of light may carry a phone conversation, while others may carry TV channels or emails, all traveling in separate channels across the Internet. At the level of single photons, we would like to send data in different channels -- colors or wavelengths -- at the same time. Quantum memories based on electrons emit and absorb visible light -- for example, red," he said. "But the optical fibers we want to use -- such as those in the ground now -- are optimized to transmit infrared, not visible light."

In experiments led by Raymer's doctoral student Hayden J. McGuinness, researchers used two lasers to create an intense burst of dual-color light, which when focused into the same optical fiber carrying a single photon of a distinct color, causes that photon to change to a new color. This occurs through a process known as Bragg scattering, whereby a small amount of energy is exchanged between the laser light and the single photon, causing its color to change.

This process, demonstrated in the UO's Oregon Center for Optics, is called quantum frequency translation. It allows devices that talk to one another using a given color of light to communicate with devices that use a different color.

The research was stimulated by work done earlier by Raymer's collaborators: Colin McKinstrie at Alcatel-Lucent Bell Labs and Stojan Radic at the University of California, San Diego.

"Other researchers have done this frequency translation using certain types of crystals," Raymer said. "Using optical fibers instead creates the translated photons already having the proper shape that allows them to be transmitted in a communication fiber. Another big advantage of our technique is that it allows us to change the frequency of a single photon by any chosen amount. The objective is to convert a single photon from the color that a common quantum memory will deal with into an infrared photon that communication fibers can transmit. At the other end, it has to be converted back into the original color to go into the receiving memory to be read properly."

The second paper published by Raymer's group focused on theoretical and experimental work at UO and at the University of Bath. It showed how to create an optical frequency comb in a hydrogen-filled optical fiber.

The optical frequency comb contains many precisely known colors or wavelengths of light, and can be used to measure the wavelength of light, much as a ruler with many tick marks can be used to measure distance.

The comb method was co-developed by John Hall of the National Institute of Standards and Technology, who won the Nobel Prize in Physics in 2005 for his work that led to the standard for measuring light frequencies.

By filling empty air holes in a hollow optical with hydrogen gas, researchers were able to change the color, or frequency, of light passing through. As a short burst of red laser passed through the gas, the hydrogen molecules were caused to vibrate, emitting strong light of many colors.

"In the first study, we worked with one photon at a time with two laser bursts to change the energy and color without using hydrogen molecules," he said. "In the second study, we took advantage of vibrating molecules inside the fiber interacting with different light beams. This is a way of using one strong laser of a particular color and producing many colors, from blue to green to yellow to red to infrared."

The laser pulse used was 200 picoseconds long. A picosecond is one-trillionth of a second. Combining the produced light colors in such a fiber could create pulses 200,000 times shorter -- a femtosecond (one quadrillionth of a second).

Such time scales could open the way to study biological processes at the level of atoms or possibly capture so-far-unseen activity in photosynthesis, Raymer said.

Co-authors with McGuinness and Raymer on the single-photon paper were McKinstrie and Radic. The National Science Foundation funded the project.

For the optical comb work, Raymer teamed with UO student doctoral Chunbai Wu and Y.Y. Wang, F. Couny and Fetah Benabid, all of the University of Bath. The NSF and the UK's Engineering and Physical Sciences Research Council supported the research through grants to Raymer and Benabid, respectively.

####

About University of Oregon
The University of Oregon is a world-class teaching and research institution and Oregon's flagship public university. The UO is a member of the Association of American Universities (AAU), an organization made up of the 63 leading public and private research institutions in the United States and Canada. The UO is one of only two AAU members in the Pacific Northwest.

Contacts:
Jim Barlow, director of science and research communications, 541-346-3481,

Source: Michael G. Raymer, professor of physics, 541-346-4785,

Copyright © University of Oregon

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Shining rings: A new material emits white light when exposed to electricity: New synthetic approach could spark development of other dynamic materials July 24th, 2017

Ultrathin device harvests electricity from human motion July 23rd, 2017

The July 23 close fly-by of asteroid 2017 BS5 is explored in a Q&A with Dr. John S. Lewis, chief scientist at Deep Space Industries July 23rd, 2017

Scientists announce the quest for high-index materials: All-dielectric nanophotonics: The quest for better materials and fabrication techniques July 22nd, 2017

Govt.-Legislation/Regulation/Funding/Policy

Ultrathin device harvests electricity from human motion July 23rd, 2017

The first light atomic nucleus with a second face July 20th, 2017

Semiliquid chains pulled out of a sea of microparticles July 20th, 2017

Here's a tip: Indented cement shows unique properties: Rice University models reveal nanoindentation can benefit crystals in concrete July 20th, 2017

Possible Futures

Shining rings: A new material emits white light when exposed to electricity: New synthetic approach could spark development of other dynamic materials July 24th, 2017

Ultrathin device harvests electricity from human motion July 23rd, 2017

The July 23 close fly-by of asteroid 2017 BS5 is explored in a Q&A with Dr. John S. Lewis, chief scientist at Deep Space Industries July 23rd, 2017

Scientists announce the quest for high-index materials: All-dielectric nanophotonics: The quest for better materials and fabrication techniques July 22nd, 2017

Academic/Education

The Physics Department of Imperial College, London, uses the Quorum Q150T to deposit metals and ITO to make plasmonic sensors and electric contact pads July 13th, 2017

Oxford Instruments congratulates Lancaster University for inaugurating the IsoLab, built for studying quantum systems June 20th, 2017

The 2017 Winners for Generation Nano June 8th, 2017

MIT Energy Initiative awards 10 seed fund grants for early-stage energy research May 4th, 2017

Quantum Computing

Into the quantum world with a tennis racket: Classical mechanics helps control quantum computers July 6th, 2017

Microsoft, Purdue collaborate to advance quantum computing May 30th, 2017

Looking for the quantum frontier: Beyond classical computing without fault-tolerance? April 27th, 2017

Harris & Harris Group Issues Its Financial Statements as of December 31, 2016, Posts Its Annual Shareholder Letter, And Will Host a Conference Call for Shareholders on Friday, March 17, 2017 March 15th, 2017

Announcements

Shining rings: A new material emits white light when exposed to electricity: New synthetic approach could spark development of other dynamic materials July 24th, 2017

Ultrathin device harvests electricity from human motion July 23rd, 2017

The July 23 close fly-by of asteroid 2017 BS5 is explored in a Q&A with Dr. John S. Lewis, chief scientist at Deep Space Industries July 23rd, 2017

Scientists announce the quest for high-index materials: All-dielectric nanophotonics: The quest for better materials and fabrication techniques July 22nd, 2017

Research partnerships

Studying Argon Gas Trapped in Two-Dimensional Array of Tiny "Cages": Understanding how individual atoms enter and exit the nanoporous frameworks could help scientists design new materials for gas separation and nuclear waste remediation July 17th, 2017

Coupling a nano-trumpet with a quantum dot enables precise position determination July 14th, 2017

GLOBALFOUNDRIES and VeriSilicon To Enable Single-Chip Solution for Next-Gen IoT Networks: Integrated solution leverages GFs 22FDX technology to decrease power, area, and cost for NB-IoT and LTE-M applications July 14th, 2017

Carbon displays quantum effects July 13th, 2017

Quantum nanoscience

Carbon displays quantum effects July 13th, 2017

Physicists make quantum leap in understanding life's nanoscale machinery June 27th, 2017

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Oxford Instruments congratulates Lancaster University for inaugurating the IsoLab, built for studying quantum systems June 20th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project